
February 5, 2019

Let's Be More Flexible: Rules and Tools for a Modern Power Grid

RAP Roundtable Discussion

David Farnsworth Senior Associate Jim Lazar Senior Advisor David Littell Principal Carl Linvill Principal Jessica Shipley Associate

Penetration of variable renewable energy

Flexibility cost

Our Roundtable

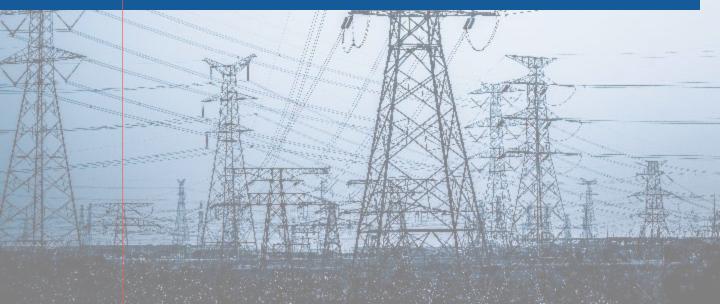
David Farnsworth

Jim Lazar

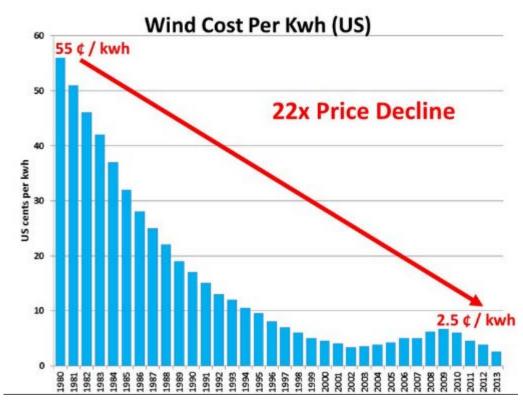
Carl Linvill

David Littell

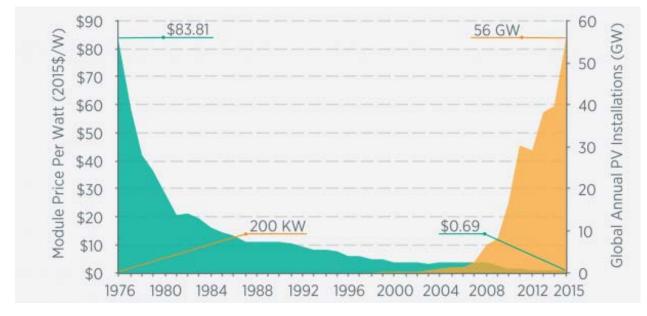
Jessica Shipley


Questions?

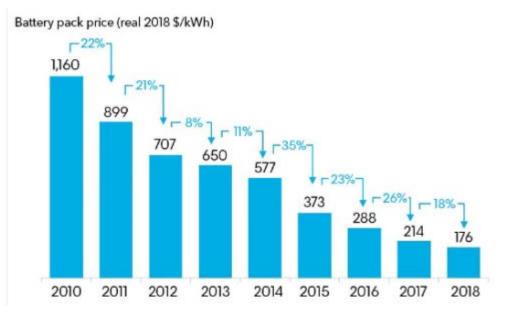
Please send questions through the Questions pane



File View Help ⊕ □ □ ×	1
Audio Sound Check 2	
 Computer audio 	<u> </u>
Phone call	
🖉 MUTED	
Headset Microphone (Logitech \sim	•
 ============== 	
Headset Earphone (Logitech Ste $$	
▼ Questions 1	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
Send	
Retooling Regulation	
Webinar ID: 294-296-827	
🛞 GoToWebinar	



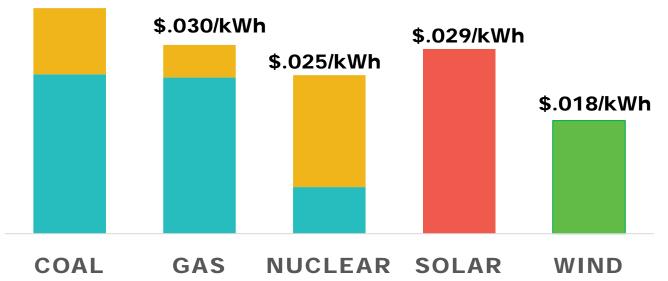
Wind Costs Dropped a Decade Ago



Solar Is Following Close Behind

Source: SunShot, US Department of Energy

This Year's News is the Battery Cost Slide



Source: BloombergNEF. Data adjusted to be in real 2018 dollars.

Existing Plants vs. Xcel Bids

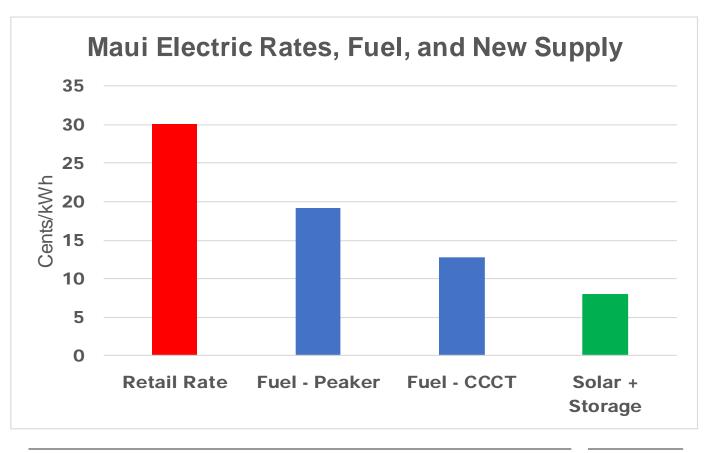
Fuel O&M Xcel Bids

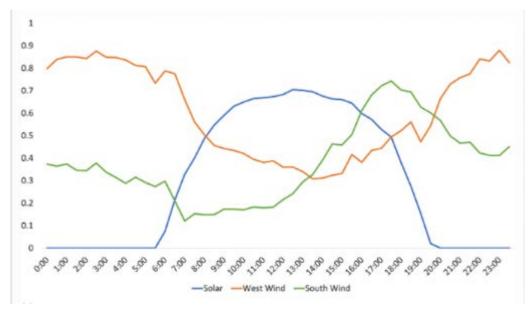
\$.037/kWh

Existing Plant Average Fuel and O&M from USEIA Table 8.4 Electric Power Annual 2016

Xcel Energy Plan

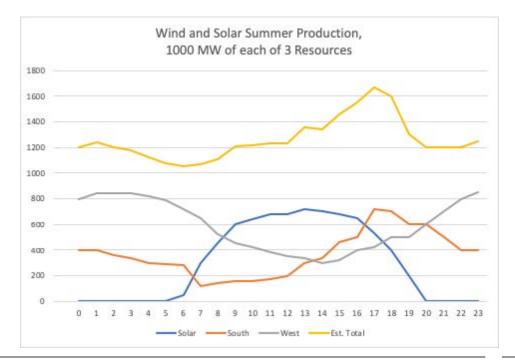
Image credit: Jeffrey Beall, Wikimedia


2 Why is Flexibility Important? Examples from Around the Country

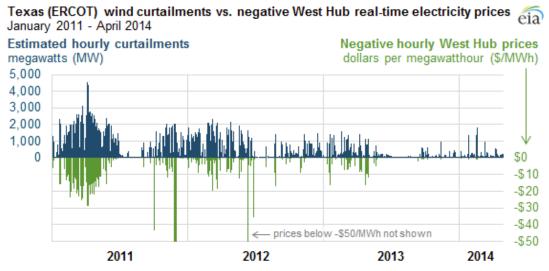

Solar + Storage in Hawaii

Project	Island	Developer	Size	Storage	Cost per kWh
Walkoloa Solar	Hawali	AES	30 MW	120 MWh	\$0.08
Kuihelani Solar	Maui	AES	60 MW	240 MWh	\$0.08
Hale Kuawehi	Hawaii	Innergex	30 MW	120 MWh	\$0.09
Mililani I Solar	Oahu	Clearway	39 MW	156 MWh	\$0.09
Waiawa Solar	Oahu	Clearway	36 MW	144 MWh	\$0.10
Hoohana	Oahu	174 Power Global	52 MW	208 MWh	\$0.10
Pacaha Colar	Marai	imergen	15	00 MM	\$0.12

SOURCE: Hawaiian Electric



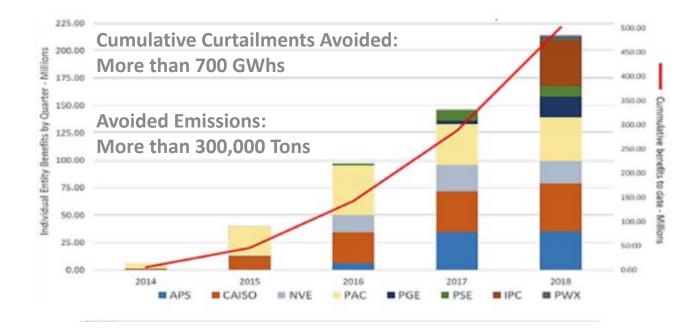
Texas Wind Resources and Solar Resources have Complementary Load Capacity Profiles


Slusarewicz and Cohen, "Assessing Solar and Wind Complementarity in Texas," Renewables: Wind, Water and Solar, 2018, Vol. 5, No. 7.

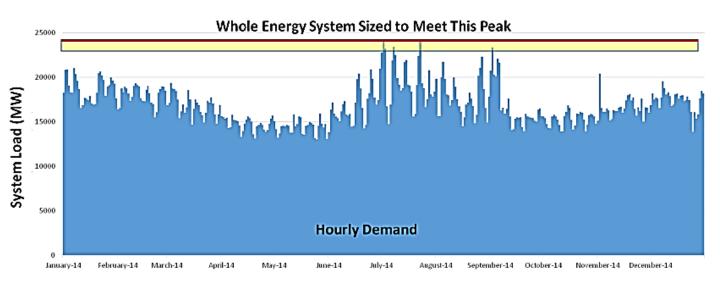
Combined, They Produce a Smoother Profile that Approximates System Needs

Adding Transmission in Texas

Increasing Resource and Geographic Diversity Has Significantly Reduced Curtailments and Stabilized Prices



Source: U.S. Energy Information Administration, based on the Electric Reliability Council of Texas & (ERCOT) for curtailments and SNL Energy of for electricity prices


The Western EIM Increases Diversity and Adds Flexibility

Western EIM Economic Benefits Growing

New England: Expensive Peaks

Source: MA DOER, State of Charge report

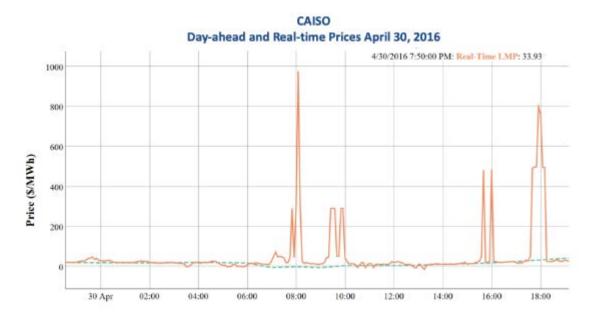
3 What Flexible Capabilities do Advanced Technologies Provide?

Supply Side: Inverter-Based Technologies Provide Important System Benefits

Taking Notice at NARUC

The Electricity Committee and Energy Resources and Environment Committee have acknowledged the importance of flexible resources.

(1) Utilities and utility commissions should be well educated about the different types of quantitative models that exist today ...

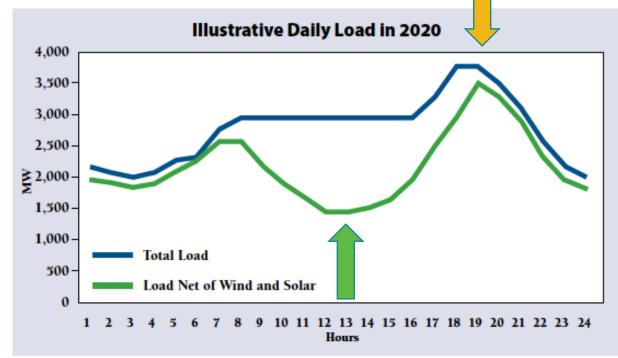

(2) Planning frameworks and modeling tools that are publicly and commercially available should model the full spectrum of services that energy storage and flexible resources are capable of providing ...

Wind, Solar, and Batteries are Valuable in Real Time

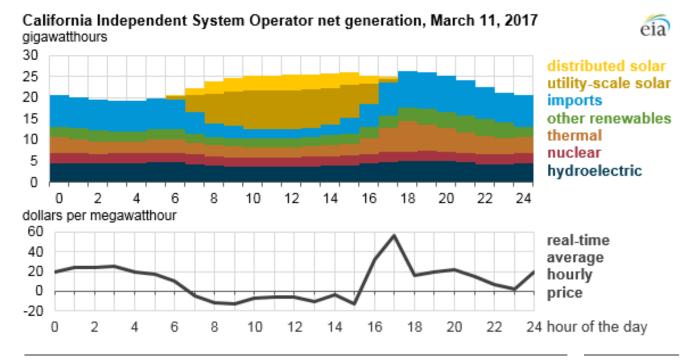
	Inverter-Based			Synchronous				Demand Response	
	Wind	Solar PV	Storage/ Battery	Hydro	Natural Gas	Coal	Nuclear	Demand Response	
Disturbance ride-through		0	C	•	0	0	0	0	
Reactive and Voltage Support			•	•	•	•	•	•	
Slow and arrest frequency decline (arresting period)	0	0	0	0	0	0		0	
Stabilize frequency (rebound period)	0	0	0	0	•	•	•	0	
Restore frequency (recovery period)	0		0	•			\bigcirc	0	
Frequency Regulation (AGC)	0	0	•	•	•	0	\bigcirc	•	
Dispatchability/Flexibility		0	•	•	0		\bigcirc	0	

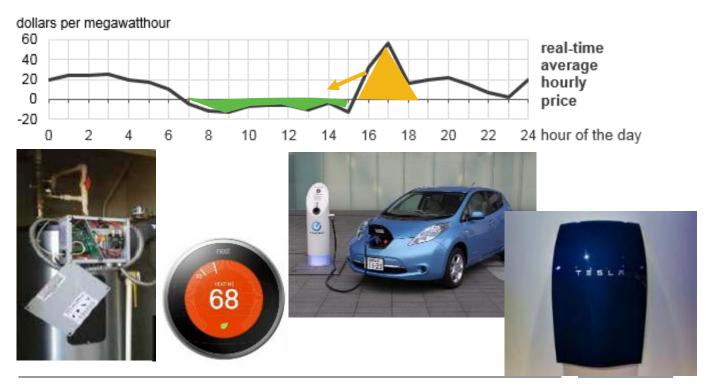
Source: www.milligangridsolutions.com

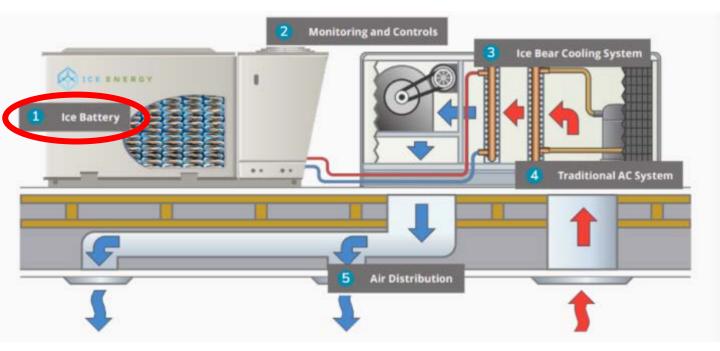
You May Have Noticed that Inverter-Based Technologies Excel at being Fast

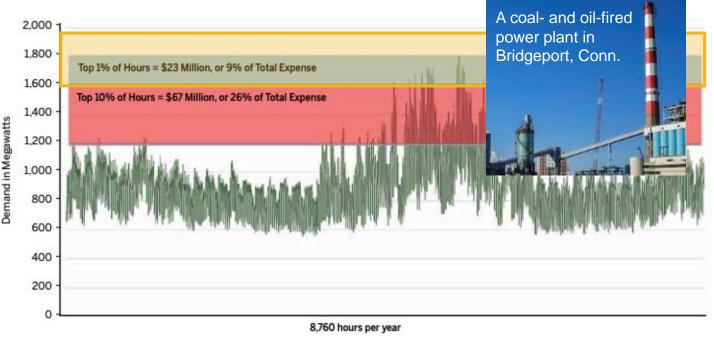


Source: www.ascendanalytics.com

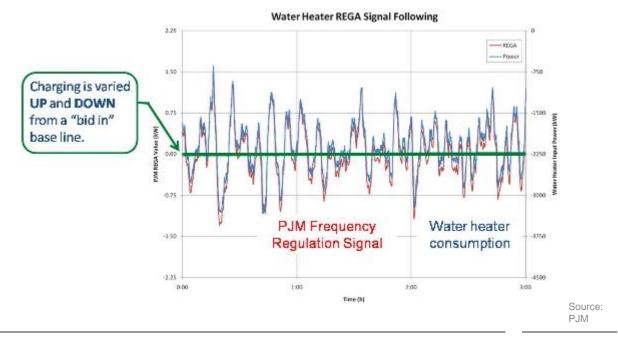

Demand Side: New Services Are Available


Load-Side Resources to "Shape" the Demand Curve

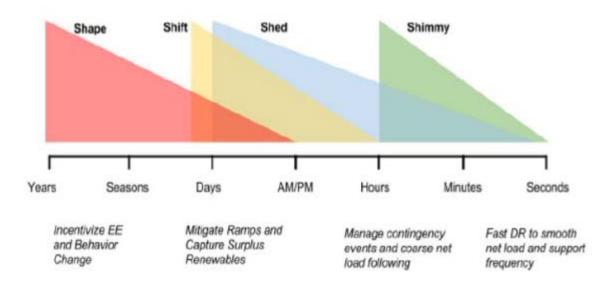

Load-side Resources Can "Shift" Demand To Times When Surplus Power is Available


Load-Side Resources Can "Shift" Demand

Ice Storage Air Conditioning



Limited Curtailment Can "Shed" During Critical Hours



Source: Rhode Island Division of Public Utilities & Carriers, Office of Energy Resources, and Public Utilities Commission. (2017). Rhode Island Power Sector Transformation: Phase One Report to Governor Gina M. Raimondo. Image credit: Conservation Law Foundation

Responsive Load Can "Shimmy" To Meet Short-Term Grid Needs

Flexibility Strategies for the Demand Side Now Span Many Timescales

Source: 2015 California Demand Response Potential Study, LBNL, November 2016

4 What Tools Do We Need to Optimize Flexibility?

Retail Pricing and Price-Responsive Demand

Your service plan: Standard Rate

Customer account charge

Delivery service charge

Cost of electricity you used

Environmental benefits surcharge

System benefits charge Vertex supply adjustment*

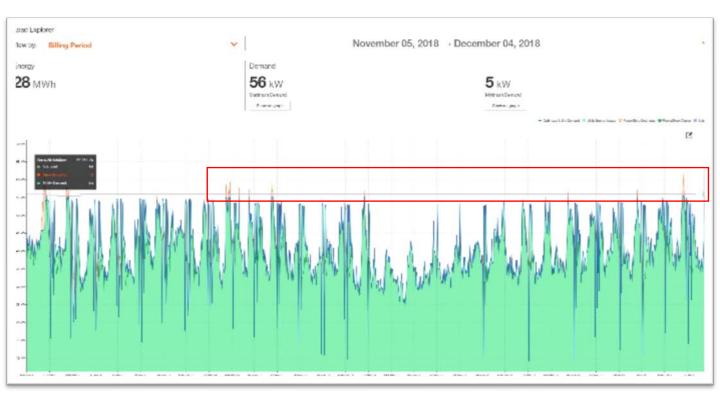
charges for electricity services

Federal environmental improvement surcharge

Your electricity bill

J10

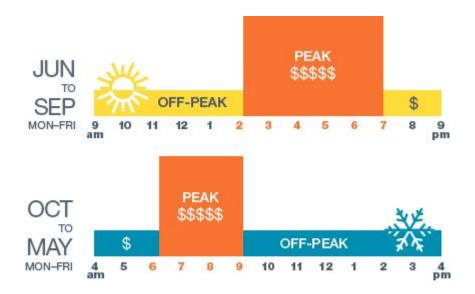
Greasurer of the United S.


\$1.60

\$0.90 \$27 51

Getting Around Demand Charges

STEM: 12 kW Savings Off 68 kW Peak



Fort Collins: Smart Residential Rate

Customer Charge	\$ 6.78			
	Summer	Winter		
Off-Peak	\$ 0.069	\$ 0.067		
On-Peak	\$ 0.241	\$ 0.216		
Tier Charge (Over 700 kWh)	+ \$.0194 / kWh			

BG&E TOU Pilot

Excludes weekends and holidays, which are billed at off-peak rates. Holidays include New Year's Day, President's Day, Good Friday, Memorial Day, Independence Day, Thanksgiving, Christmas and the Monday following if any of these holidays fall on a Sunday.

72

Controlled Loads

Efficient Building Code

High-efficiency Heat Pump with Air Exchangers

HEATING

4

PEAK DEMAND (KW)

Ice Storage

4

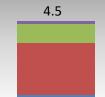
PEAK DEMAND (KW)

Smart Thermostat

0

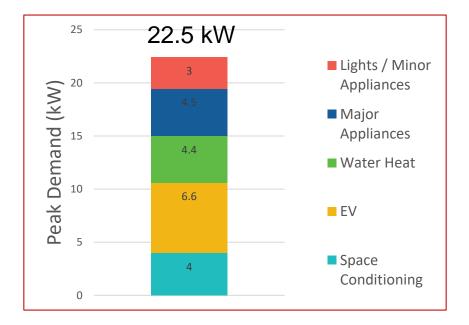
Smart Charging Electric Vehicles

Grid-Integrated Heat Pump Water Heater


WATER HEAT

4.4

PEAK DEMAND (KW)


Smart Appliances

PEAK DEMAND (KW)

Uncontrolled Household Loads Could Add Up To A Lot

Flexibility Dramatically Cuts Peak Demand

Shift EV, Water Heat, Major Appliances, and Pre-Condition Spaces

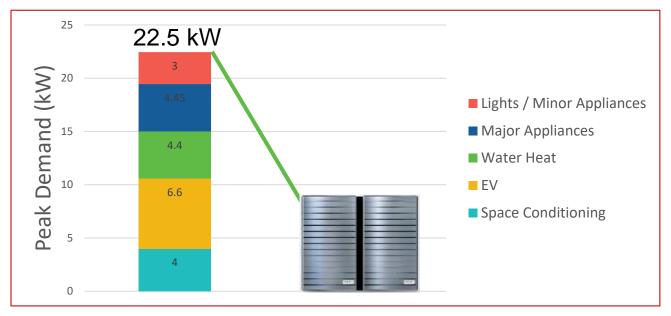


Image credit: https://electriqpower.com/powerpod/

Controlled Water Heaters

The CTA 2045 socket enables any control network to connect to any new water heater.

Open Planning and Market Processes

Flexibility Needs Must be Modeled and Capabilities Compensated

... Make It So

Image credit: Getty Images

Regulators Can Make a Difference:

By Opening Procurement to Solar, Wind and Storage (Like Colorado)

				Median Bid			
	#of		#of	Project	Price or	Pricing	
Generation Technology	Bids	Bid MW	Projects	MW	Equivalent	Units	
Combustion Turbine/IC Engines	30	7,141	13	2,466	\$ 4.80	\$/kW-mo	
Combustion Turbine with Battery Storage	7	804	3	476	6.20	\$/kW-mo	
Gas-Fired Combined Cycles	2	451	2	451		\$/kW-mo	
Stand-alone Battery Storage	28	2,143	21	1,614	11.30	\$/kW-mo	
Compressed Air Energy Storage	1	317	1	317		\$/kW-mo	
Wind	96	4 2,278	42	17,380	\$ 18.10	\$/MWh	
Wind and Solar	5	2,612	4	2,162	19.90	\$/MWh	
Wind with Battery Storage	11	5,700	8	5,097	21.00	\$/MWh	
Solar (PV)	152	29,710	75	13,435	29.50	\$/MWh	
Wind and Solar and Battery Storage	7	4,048	7	4,048	30.60	\$/MWh	
Solar (PV) with Battery Storage	87	16,725	59	10,813	36.00	\$/MWh	
IC Engine with Solar	1	5	1	5		\$/MWh	
Waste Heat	2	21	1	11		\$/MWh	
Biomass	1	9	1	9		\$/MWh	
Total	430	111,963	238	58,283			

RFP Responses by Technology

- - --

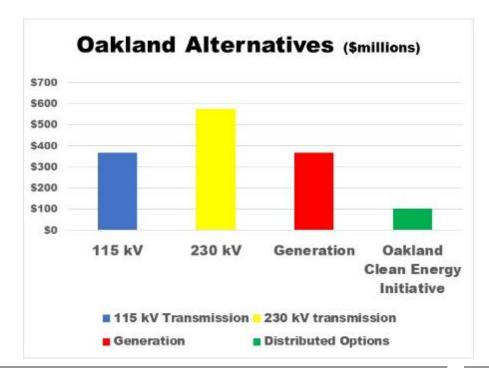
By Soliciting Cost-Effective Solar and Storage Bids (like Nevada)

By Opening up Wholesale Markets to Aggregated DERs and Storage (Like California)

The CAISO initiated the Electricity Storage and Distributed Energy Resources (ESDER) Initiative in 2014 to:

Enhance the ability of ISO connected and distributionconnected resources to participate in ISO markets

Phase 3 was completed in 2018 and market participation enhancements included providing a bidding mechanism that allows behind the meter resources to offer load using and load curtailing service


And by Inviting Advanced Technology Alternatives when Fossil Retires ...

The PG&E and East Bay Clean Energy project, the Oakland Clean Energy Initiative (OCEI), replaces a retiring 165 MW Dynegy gas peaker, obviates need for 115 kV and 230 kV transmission.

The combination of resources includes:

- 25-40 MW combination of EE, DR, PVDG (minimum 19 MW of load reducing response)
- 10 MW/40 MWh storage
- Substation upgrades and line re-ratings

... Saving Ratepayers Money and Reducing Emissions

By Using Demand Response to Manage Seasonal Loads

If there is a significant increase in energy prices or energy demand in the summer months, typically between June and September, your PeakRewards device may receive a signal to cycle your air conditioner up to your chosen cycling level (50%, 75% or 100%).

Source: Baltimore Gas & Electric

By Designing Pricing to Reflect Grid Management Needs at the **Regional**, Utility, Zonal, Nodal, and **Circuit Levels**

Questions?

Please send questions through the Questions pane

File View Help ⊕□□ ×	-
≺ Audio য	
Sound Check	
Computer audio	0
Phone call	۲
🖉 MUTED	
Headset Microphone (Logitech \lor	Y
	
Headset Earphone (Logitech Ste 🗸	
▼ Questions 1	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
[Enter a question for stan]	
Send	
Retooling Regulation	1
Webinar ID: 294-296-827	
🔀 GoToWebinar	

Summary

- Flexibility helps meet reliability needs at lower cost while adding significant amounts of renewables.
- Technology changes, new capabilities, and forms of grid interactivity are valuable opportunities for the electric sector.
- This is an opportunity for regulators to provide policy guidance to help realize the many benefits of a more flexible grid.

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, nonpartisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org