

Designing Distributed Generation Tariffs Well: Fair Compensation in a Time of Transition

Presented by Carl Linvill

We Have Visited Lands Proximate ...

Now We Prepare to Head Out to Sea ...

Our Main Points ...

- Value is a two way street
- Defining value and cost is important
- Subsidies only occur if cost exceeds value
- Extrapolating from extreme situations is misleading
- Transitioning to a transactive paradigm
- In the mean time: Net Energy Metering and Feed-in Tariffs work well if ...

Tariffs Designed Well if ...

- Valuation aligned with the Public Interest
- Fair value paid for DG services and Grid services
- Tail block rates set at LRMC (most places)
- Set other tariff and rate design parameters accordingly
- Administrative simplicity matters
- Consider incentives and decoupling separately

Consider: Valuation is your compass

Major Categories of Value

Benefits

Energy Line loss savings Generation capacity T&D capacity Fuel price hedge Risk reduction **Environmental** Grid security & reliability

Costs

Direct
Administrative
Interconnection
Integration
Risk/opportunity cost

Terminology differs from study to study

RMI Survey Of Multiple VOS Studies: Average Value of Solar: \$.1672/kWh

Helpful Reference Documents

- RAP, Full Value of Energy Efficiency, Lazar & Colburn (September 2013)
 - http://www.raponline.org/document/download/id/6739
- Rocky Mountain Institute (RMI), A Review of Solar PV Benefit & Cost Studies, 2nd Edition (September 2013)
 - http://www.rmi.org/Knowledge-Center/Library/2013-13 eLab DER
 Benefit Cost Deck 2nd Edition 130903
- Interstate Renewable Energy Council (IREC), *A Regulator's Guidebook: Calculating the Benefits and Costs of Distributed Solar Generation* (October 2013)
 - http://www.irecusa.org/wpcontent/uploads/2013/10/IREC Rabago Regulators-Guidebook-to-Assessing-Benefits-and-Costs-of-DSG.pdf

Consider: Cross-Subsidies run both ways

- If value of PV < volumetric charges:
 - Other customers subsidize PV customers
 - Under-recovery of utility's fixed costs
 - Upward pressure on rates (cross subsidy)
 - Reduced utility shareholder returns
- If value of PV > volumetric charges:
 - PV customers subsidize other customers
 - Suppresses PV deployment

Consider: Don't Extrapolate from Extremes Tail Block Rates Vary (E3, 2013)

Consider: Many Possible Alternative or Supplemental Tariff Policies

- Fixed charges
- Demand charges
- Minimum monthly bills
- Time-based rates
- Stand-by rates
- Two-way rates (i.e., value of solar)
- Separate PV customer class

Illustration of Alternative Rate Designs

Type of Charge	Unit / Usage	Т	Typical Current Residential Tariff		Option 1 Fixed Monthly Charge			Option 2: Demand Charge			Option 3: Bidirectional Distribution Charge	
Monthly Fixed Charge:	\$/Month	\$	5.00		\$	35.00		\$	5.00		\$	5.00
Demand Charge	\$/kW/Month				\$	-		\$	3.00		\$	-
Distribution Charge	\$/kWh				\$	-		\$	-		\$	0.03
Off-Peak Energy	\$/kWh	\$	0.145		\$	0.08		\$	0.08		\$	0.08
On-Peak Energy	\$/kWh	\$	0.145		\$	0.15		\$	0.15		\$	0.15
Average Customer Bill												
Fixed Charge	Per Customer	\$	5.00		\$	35.00		\$	5.00		\$	5.00
Demand Charge	10 kW Demand	\$	-		\$	-		\$	30.00		\$	-
Distribution Charge	1,000 kwh total energy	\$	-		\$	-		\$	-		\$	30.00
Off-Peak Energy	500 kWh on-peak	\$	72.50		\$	40.00		\$	40.00		\$	40.00
On-Peak Energy	500 kWh off-peak	\$	72.50		\$	75.00		\$	75.00		\$	75.00
		\$	150.00		\$	150.00		\$	150.00		\$	150.00

Each alternative produces \$150/month from a customer using 1,000 kWh/month

Breakdown of Hypothetical PV Customer Bill

Rate Element	Res	Typical Current Residential Tariff		Option 1 Fixed Monthly Charge	D	otion 2: emand harge	Option 3: Bidirectional Distribution Charge		
Fixed Charge	\$	5.00	\$	35.00	\$	5.00	\$	5.00	
Demand Charge	\$	-	\$	-	\$	30.00	\$	-	
Distribution Charge	\$	-	\$	-	\$	-	\$	30.00	
Off-Peak Energy	\$	72.50	\$	40.00	\$	40.00	\$	40.00	
On-Peak Energy	\$	(72.50)	\$	(75.00)	\$	(75.00)	\$	(75.00)	
Total Bill:	\$	5.00							
Total Distribution Service:	\$	5.00	\$	35.00	\$	35.00	\$	35.00	

Assumptions: 10 kW maximum demand; 1,000 kWh total consumption, 50% on-peak; 1,000 kWh total on-site production. 500 kWh imported from grid off-peak; 500 kwh exported to grid on-peak

Consider: Financing Matters (3rd Party Ownership Models)

Source: SEIA/GTM Research: U.S. Solar Market Insight® (Q2 2013)

Consider: Sound Decision-making benefits all

- For consumers: Keep more \$\$, Quality
- For utilities: Corporate health, purpose
- For investors: Safety, value, expectations
- For employees: safety and welfare, pride
- For the regulatory process: confidence
- For society: key role for power in society

A process that promotes shifting risk rather than minimizing risk is inherently unstable

In Fact, though often not in appearance,

- Consumer, Utility, Third Party and Investor interests are intertwined
- All are served by strategies that limit risk

 But who advocates for this societal perspective?

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Carl Linvill

clinvill@raponline.org

Designing DG Tariffs Well:

http://www.raponline.org/document/download/id/6898

The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • Montpelier, VT 05602 • phone: +1 802-223-8199 • fax: +1 802-223-8172