Non-Wires Alternatives to Grid Congestion

NGA Webinar

Frederick Weston
Director, China Program

21 July 2015
Drivers of T&D Investment

• Replacement of aging T&D infrastructure
• Addressing unexpected equipment failures
• Connecting new generation
 – Particularly important for renewables which are often sited in remote locations
• Providing access to more economic sources of energy and peak capacity
• Addressing load growth generally
IOU T&D Investment (US$ bn 2012)
How EE Savings Can Defer T&D

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No EE programs</td>
<td>3.0%</td>
<td>90</td>
<td>93</td>
<td>95</td>
<td>98</td>
<td>101</td>
<td>104</td>
<td>107</td>
<td>111</td>
<td>114</td>
<td>117</td>
<td>121</td>
<td>125</td>
<td>128</td>
</tr>
<tr>
<td>0.5% savings/year</td>
<td>2.5%</td>
<td>90</td>
<td>92</td>
<td>95</td>
<td>97</td>
<td>99</td>
<td>102</td>
<td>104</td>
<td>107</td>
<td>110</td>
<td>112</td>
<td>115</td>
<td>118</td>
<td>121</td>
</tr>
<tr>
<td>1.0% savings/year</td>
<td>2.0%</td>
<td>90</td>
<td>92</td>
<td>94</td>
<td>96</td>
<td>97</td>
<td>99</td>
<td>101</td>
<td>103</td>
<td>105</td>
<td>108</td>
<td>110</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td>1.5% savings/year</td>
<td>1.5%</td>
<td>90</td>
<td>91</td>
<td>93</td>
<td>94</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>100</td>
<td>101</td>
<td>103</td>
<td>104</td>
<td>106</td>
<td>108</td>
</tr>
<tr>
<td>2.0% savings/year</td>
<td>1.0%</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
</tr>
</tbody>
</table>

Source: *Energy Efficiency as a T&D Resource*, Energy Futures Group, January 2015
T&D Deferrals

• Passive: Occur as a result of broad-based EE programs
 – Con Ed estimated that system-wide efficiency programs reduced planned capital expenditures by more than $1 bn
 – ISO-NE identified over $400 million in previously planned transmission investments in New Hampshire and Vermont that it is now deferring beyond its 10-year planning horizon

• Active: Geographically-targeted EE aimed at avoiding T&D investments
Geographic Targeting: Con Ed

- NYC 2003-2010: $150 mn for EE, DG, fuel-switching
 - ESCO performance contracting
 - Permanent load reductions avoided upgrades in more than 1/3 of Con Ed’s distribution networks
 • 75 million in T&D savings; $300 mn total savings
 • 40 MW savings by 2007
- Brooklyn 2014: $200 mn
 - 41 MW demand-side, 11 MW supply-side by 2018, for deferrals of $1.0 bn in upgrades to 2019 and 2026

Source: Energy Efficiency as a T&D Resource, Energy Futures Group, January 2015
Geo-Targeting: Green Mountain Power

- **1995:** Ski resort load increase of 15 MW
 - Ski resort load management and utility EE in region
 - Goals met, upgrade avoided
 - But GMP ended program despite additional cost-effective savings available

- **Since 2005,** a statewide system planning collaborative
 - Response to proposal for major transmission project (ultimately approved)
 - Geo-targeting of EE through the statewide efficiency utility, *Efficiency Vermont*
 - Mixed results: savings not as high as expected, but upgrades still avoided
Barriers to NWAs

- Financial incentives
 - Utilities make more by investing in “poles and wires” than in lower-cost alternatives
- EE’s multiple attributes/benefits
 - T&D only one of many, but the only one RTOs and TOs think about
- System planning is highly technical, and biased to technical solutions
- System engineers tend to distrust demand resources
- Risk aversion
 - Not only with respect to reliability, but to regulatory approval
- Socialization of transmission costs
 - But not of NWAs
- Responsibility for transmission planning is often dispersed among many parties
Observations, Lessons Learned

• Geographically targeted NWAs can defer some T&D
• T&D deferrals can be very cost-effective
• High value in “modular” NWAs
• Policy is driving most NWA investment
• Implementation:
 – Communication & trust are essential
 – Buy-in from senior management
 – Smaller is easier
 – Distribution NWAs are easier than transmission
 – Integration of EE with other NWAs is very effective
 – Data and analytical tools are important
• Impact assessment
 – Focus on T&D reliability needs
Recommendations

• Least-cost planning to meet T&D needs
• Long-term forecasting of T&D needs
 – To provide sufficient lead time for NWAs
• Screening criteria for NWA analyses
 – Cost, load reduction, and lead-time thresholds
 • BPA currently reassessing its NWA criteria
• Equitable cost allocation for NWAs
 – With, perhaps, congestion-cost management PBR on T&D owners/operators
About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

rweston@raponline.org