Electric Cost Allocation for a New Era: Principles and Concepts

Presentation to NARUC Staff Subcommittee on Rate Design

Jim Lazar Senior Advisor
Mark LeBel Associate

The Regulatory Assistance Project (RAP)®
Major Topics

- Principles and Background
- Technology and Regulatory Change
- Overarching Issues for All Frameworks
- Embedded and Marginal Cost Frameworks
- Using Cost Studies
- Key Takeaways
About the Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>First Rate Case</th>
<th>Dockets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Lazar</td>
<td>1974</td>
<td>>100</td>
</tr>
<tr>
<td>Paul Chernick</td>
<td>1977</td>
<td>>350</td>
</tr>
<tr>
<td>Bill Marcus</td>
<td>1978</td>
<td>>300</td>
</tr>
</tbody>
</table>

Collective experience:

43 states, 8 provinces
1 Principles and Background
Simplified rate-making process

1. Determine revenue requirement
 - Net rate base
 - Plant in service – depreciation reserve
 - Rate of return
 - Depreciation expense
 - Plant in service x depreciation rate
 - Operating expense
 - Fuel + purchased power + labor + labor overheads + supplies + services + income taxes
 - Other taxes

2. Calculate total in $ millions

Allocate costs among customer classes

- Residential
- Commercial
- Industrial
- Street lighting

Design retail rates
- Dollars per month
- Cents per kWh peak
- Cents per kWh off-peak
- Dollars per month
- Cents per kWh peak
- Cents per kWh off-peak
- Dollars per month
- Cents per kWh peak
- Cents per kWh off-peak
- Dollars per kW monthly
- Dollars per light per month
Why Does Cost Allocation Matter?

- Cost allocation matters to customers: the allocated costs are used to set rates for each class
- Two key analytical perspectives
 - Cost causation
 - Costs follow benefits
- Data and analysis from cost allocation process often informs rate design
- Older techniques have trouble accounting for the features of the modern grid
The 1992 Grid

Illustrative traditional electric system

- **Generation**
- **Transmission**
- **Distribution**

Transmission lines 765, 500, 230 and 138 kV

- Subtransmission customer 26 kV or 69 kV
- Primary customer 13 kV or 4 kV
- Secondary customers 120 V or 240 V

Traditional Embedded Cost of Service Study (ECOSS) Process
Typical cost classifications used in cost allocation studies are summarized below.

<table>
<thead>
<tr>
<th>Typical Cost Function</th>
<th>Typical Cost Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>Demand Related</td>
</tr>
<tr>
<td></td>
<td>Energy Related</td>
</tr>
<tr>
<td>Transmission</td>
<td>Demand Related</td>
</tr>
<tr>
<td></td>
<td>Energy Related</td>
</tr>
<tr>
<td>Distribution</td>
<td>Demand Related</td>
</tr>
<tr>
<td></td>
<td>Energy Related</td>
</tr>
<tr>
<td></td>
<td>Customer Related</td>
</tr>
</tbody>
</table>
Traditional MCOSS Process

- Created in the 1970s
 - Adopted in a handful of states
- The basics
 - Functionalize, like ECOSS
 - Estimate marginal unit costs for each function
 - Compute sum of marginal costs by class
 - Reconcile to total revenue requirement
- Theory that efficient pricing should be better linked to marginal costs at all points in the process
- Will be addressed in more detail in future technical webinar
2 Technology and Regulatory Change
The Evolving Electric System

- Most current methods pre-date 1990s; many pre-date 1950s
- Numerous changes since then need to be accounted for:
 - Technology changes
 - Regulatory changes
Wind and Solar

- Capital intensive
- No fuel
- Peak reliability benefit may be limited in some regions
Storage

• Capital intensive

• Multiple purposes:
 • Shift energy to high-value periods
 • Support T&D
 • Very reliable capacity
 • Ancillary services
 • Resilience
Customer-Sited Resources

• Shift net peak hours for both generation and delivery

• Distribution system provides upstream benefits
Energy Efficiency

- Implemented at customer level
- Saves generation, transmission & distribution
- Often booked as customer service
Demand Response

- Peaking resource with little utility investment
- Substitution of data and controls for both capital and fuel
- Cheap compared to any supply option
Smart Grid and Big Data

• Reduce system costs and lower losses
• Granular customer and distribution system data
• Storage locations can be optimized
Electric Vehicles

- Potential very large additional load
- High incremental costs if done wrong
- But can be almost all off-peak, or even flatten net load
Illustrative modern electric system

Processors
Execute special protection schemes in microseconds.

Smart appliances
Can shut off in response to frequency fluctuations.

Demand management
Use can be shifted to off-peak times to save money.

Sensors
Detect fluctuations and disturbances, and can signal for areas to be isolated.

Storage
Energy generated at off-peak times could be stored in batteries for later use.

Generators
Energy from small generators and solar panels can reduce overall demand on the grid.

Regulatory Changes Since 1990

- Restructuring and new wholesale and retail markets
- Performance-based regulation
- Public policy costs for efficiency, environment, equity, etc.
- New stranded cost risks
3 Overarching Issues
Cost Causation for Electric System

- System serves joint needs of all customers across all hours of the year
- Each function has distinct cost drivers
 - Energy supply costs are time-differentiated
 - Transmission lines serve multiple purposes
 - Distribution is built only where there is load to support it
 - Basic meters are for billing, but the costs of AMI are incurred for a broad array of purposes
Determining Customer Classes

Types:
- Residential
 - Single-Family
 - Multi-Family
 - Solar?
 - Heating?
- Commercial
- Industrial
- Irrigation
- Street Lighting
4 Embedded Cost Frameworks
Best Practices for All Frameworks

• Apportion shared assets on measures of usage
• Ensure broad sharing of administrative and general costs
• Eliminate the artificial distinction between fixed and variable costs
• Only customer-specific costs are customer-related.
Fixed Costs Generally

- All enterprises incur costs that are fixed in the short run
- Most fixed costs are spread over the units that are sold
- As businesses grow, they incur additional fixed costs.

Source: www.alexslemonade.org
Fixed Costs in the Electric System

- Equipment type and cost depend on expected use
 - Generation mix
 - Transmission lines added to connect remote resources
 - Line and transformer sizing
- Wear and tear drives continuing costs
 - Generator usage
 - T&D equipment ages from repeated high loads
Fixed versus Variable Example

• Multiple ways to serve an increase in peak demand
 • Peaker – mix of fixed and variable
 • Battery storage – almost entirely fixed costs
 • Demand response – variable costs
Reforms to Traditional ECOSS

• Energy drives significant portions of transmission, shared distribution, and generation capacity costs
 • These costs are not entirely caused by peak demand
• Some energy-related costs vary by time
 • E.g., fuel and purchased power
• Use broad peak measures for demand-related costs
 • Eliminate 1CP/4CP/12CP for transmission and generation capacity
• Use basic customer method for customer connection costs
 • Minimum system and zero intercept methods are unreasonable
• Functionalize and classify AMI and distributed energy resources across all elements of electric system that they benefit
Issues with Traditional Demand & Energy Allocators

- Demand at what hours?
 - System peak, equipment peak, or class peak?
 - Demand allocators typically only use a subset of the relevant hours
- Energy-classified costs are usually allocated using annual kWh usage
 - Fails to reflect time-varying costs
- Time-based allocation addresses these issues
Creating a Modern ECOSS

- Smarter customer classes;
- New and more granular functions;
- Classification and allocation should reflect time-varying loads;
- Clear division between shared distribution plant and the equipment that connects individual customers.
Modern embedded cost of service study flowchart

Revenue requirement

Functionalization

Generation
Transmission
Distribution
Billing, customer service, and A&G costs

Time Assignment

Peak hours
Intermediate hours
All hours, including off-peak
Site infrastructure, billing and collection

Allocation

Residential
Commercial
Industrial
Street lighting

34
Old Ways vs. New Methods

Generation

The Old Way

- Fixed costs classified to demand
- Allocated on narrow measures of peak demand (1CP, 12CP)

Modern Methods

- Fixed and variable costs assigned to relevant hours.
- Costs allocated on class hourly usage
Old Ways vs. New Methods

Transmission

The Old Way
• All costs classified as demand-related
• Allocated on narrow measures of peak

Modern Methods
• Each component is allocated based on its use and need.
Old Ways vs. New Methods

Distribution

The Old Way

• Many shared costs classified as customer-related
• Demand costs allocated on non-coincident load

New Methods

• No shared costs are customer-related
• Demand costs allocated on usage in broad peak periods
5 Presenting and Using Results
Presentation of Results

Computing class rate of return in a embedded cost study

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Residential</th>
<th>Small (up to 20 kWs)</th>
<th>Medium (20 to 250 kWs)</th>
<th>Large (more than 250 kWs)</th>
<th>Large primary</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>$117,760,688</td>
<td>$28,116,419</td>
<td>$8,342,138</td>
<td>$26,156,458</td>
<td>$38,730,796</td>
<td>$15,134,759</td>
<td>$1,280,117</td>
</tr>
<tr>
<td>Allocated expenses</td>
<td>$112,438,805</td>
<td>$28,297,246</td>
<td>$8,997,362</td>
<td>$23,807,377</td>
<td>$35,927,265</td>
<td>$14,280,041</td>
<td>$1,129,515</td>
</tr>
<tr>
<td>Operating income</td>
<td>$5,321,883</td>
<td>-$180,827</td>
<td>-$655,223</td>
<td>$2,349,081</td>
<td>$2,803,532</td>
<td>$854,718</td>
<td>$150,603</td>
</tr>
<tr>
<td>Allocated rate base</td>
<td>$87,878,094</td>
<td>$24,935,855</td>
<td>$8,339,503</td>
<td>$18,481,728</td>
<td>$26,069,711</td>
<td>$9,399,629</td>
<td>$651,667</td>
</tr>
<tr>
<td>Allocated return</td>
<td>$5,321,883</td>
<td>$1,510,111</td>
<td>$505,039</td>
<td>$1,119,251</td>
<td>$1,578,778</td>
<td>$569,240</td>
<td>$39,465</td>
</tr>
<tr>
<td>Rate of return</td>
<td>6.06%</td>
<td>-0.73%</td>
<td>-7.86%</td>
<td>12.71%</td>
<td>10.75%</td>
<td>9.09%</td>
<td>23.11%</td>
</tr>
<tr>
<td>Profit margin</td>
<td>4.52%</td>
<td>-0.65%</td>
<td>-7.82%</td>
<td>8.94%</td>
<td>7.21%</td>
<td>5.62%</td>
<td>13.33%</td>
</tr>
<tr>
<td>Revenue-cost ratio</td>
<td>100.00%</td>
<td>94.33%</td>
<td>87.79%</td>
<td>104.93%</td>
<td>103.27%</td>
<td>101.92%</td>
<td>109.51%</td>
</tr>
<tr>
<td>Revenue shortfall (or surplus)</td>
<td>$1,690,938</td>
<td>$1,160,262</td>
<td>($1,229,831)</td>
<td>($1,224,754)</td>
<td>($285,478)</td>
<td>($111,138)</td>
<td></td>
</tr>
<tr>
<td>Percentage increase for equal rate of return</td>
<td>6.01%</td>
<td>13.91%</td>
<td>-4.70%</td>
<td>-3.16%</td>
<td>-1.89%</td>
<td>-8.68%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Independent rounding may affect results of calculations.
Sankey diagram for modern embedded cost of service study

Revenue requirement: 1,500

Generation: 600
Transmission: 200
Distribution: 400
Customer service, billing and A&G: 300

Peak hours: 250
Intermediate hours: 375
All hours: 635

Site infrastructure, billing and collection: 240

Residential: 500
Commercial: 460
Industrial: 400
Street lighting: 140
Using The Results of Studies

- Examine multiple reasonable approaches
- Define a range of reasonableness
- Apply judgment
- Change allocation of costs (and rates) gradually
Relationship Between Cost Allocation and Rate Design

- Cost allocation and rate design have different purposes:
 - Cost allocation = group equity
 - Rate design = customer understanding and efficient incentives
- Bad allocation techniques encourage bad rate design
- Good cost allocation techniques can inform modern rate design
Start With Costs By Function

- Billing and Collection
- Site Infrastructure
- A&G Costs
- Distribution Peaking
- Distribution Mid-Peak
- Distribution Backbone
- Network Transmission
- Transmission Backbone
- Demand Response
- Peaking Generation
- Mid-Merit Generation
- All Hours Generation
Build a Cost-Based TOU Rate for Shared Elements of System

Critical Peak Rate
75 cents per kWh

On-Peak Rate
22 cents per kWh

Mid-Peak Rate
14 cents per kWh

Off-Peak Rate
8 cents per kWh

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of Day
Important Takeaways
Key Concepts

• Consider both cost causation and benefits of all types of costs
• Technology and regulation have changed
• Use newly available load and system data
• Smart-grid costs provide benefits for multiple functions
Key Reforms

• Smarter customer classes based on real cost distinctions
• Time-based methods for classification/allocation
• Shared assets are NOT customer costs
• Thoughtful apportionment of A&G costs
“Allocation of costs is not a matter for the slide rule. It involves judgment of a myriad of facts. It has no claim to an exact science.”

Justice William O. Douglas, U.S. Supreme Court

About RAP

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Contact us at:
jlazar@raponline.org
mlebel@raponline.org