Building Efficiency and Electrification for the Environment

Environmental Council of the States

2021 STEP Meeting: Partnering on Climate

Climate & the Built Environment Roundtable

David Littell, Senior Advisor
U.S. Program
The Regulatory Assistance Project®

Practice Group Leader
Bernstein Shur
100 Middle Street
Portland, Maine 04101

Emails:
dlittell@bernsteinshur
dlittell@raponline.org

Twitter: @DavidPLittell
Overview of Building Electrification

- Electrification trends and background
- How we talk about energy and electrification is part of the problem we need to think about
- What do we want to do with building efficiency and electrification?
 - a) reduce energy system costs,
 - b) reduce consumer costs, and
 - c) reduce pollutant emissions.
- Advanced technologies now allow regulators, consumers and the market to get there
1 Building Electrification and the Environment: The U.S. Basics
Electricity Sector Emissions Down & Building Sector Emissions Up

Annual CO₂ emissions from electric power and buildings sectors
Million metric tons CO₂, US total, 2007–2019

Electric Power: Down 33% since 2007
Buildings: Up 7% since 2007

Source: EIA
Adapted from Rocky Mountain Institute slides
Beneficial Electrification Means Using More Electricity

• Instead of using petroleum at 20% efficiency in vehicles, we can use electricity at 80% in electric vehicles.

• Instead of heating oil, gas, propane at 80 to 90% efficiency in furnaces, we can use electricity at 300% in heat pumps (air or ground source).

Q: Do consumers know this?
Building Electrification Trends by U.S. Region

- Residential
 - % of US housing units which are all-electric
 - Source: EIA RECS and CBECS

- Commercial
 - % of US commercial buildings which are all-electric
 - Source: EIA RECS and CBECS
Fuels Still Dominate Space and Water Heating

Final energy use in residential buildings by fuel and end use application

End Use

Source: EIA’s Residential Consumption Survey (RECS) 2015
Clean Air Act: Strategies to Prevent Air Pollution Recognized

The Clean Air Act – EPA to develop “nonregulatory strategies and technologies for air pollution prevention,” including “end-use efficiency, and fuel-switching to cleaner fuels.”

CAA Section 103(g), 42 USC Section 7403g.

Energy Policy Act (2005) -- EPA and DOE to implement:

• “a voluntary program to identify and promote energy-efficient products and buildings...through voluntary labeling of ... products and buildings that meet the highest energy efficiency standards.”

• Develop test procedures to determine
 • (i) estimated annual operating costs of all covered products ... and
 • (ii) at least one other measure of energy consumption of such products which the Administrator determines is likely to assist consumers in making purchasing decisions.

2 What are the environmental benefits of efficiency and electrification?

It’s hard to talk about the technical aspects BUT quite possible!
Communications: Can metrics be precise yet more compelling?

MPGe is a metric that allows for a comparison between vehicles regardless of how they are fueled.

Would the following metric be compelling to EV buyers:

Emissions Efficiency
(lbs. X per/mile)

Colburn, Lazar, Dennis

“fuel-switching to cleaner fuels.”
CAA Section 103(g)

“to assist consumers in making purchasing decisions.”
Energy Policy Act Section 323(4)
Energy Efficiency Messages and Policy Influence Customer Choices

- Which water heater saves more energy? . . costs (lifetime, initial purchase)? . . emissions?

- Tend to reward switching to a more efficient appliance that uses the same fuel

- Programs often explicitly disallow fuel switching so consumers get mixed messages

Source for images: The Home Depot
Current efficiency metrics make comparisons difficult

For Oil & Natural Gas Furnaces
Annual Fuel Utilization Efficiency (AFUE)

For Air Conditioners & Heat Pumps
Heating Seasonal Performance Factor (HSPF)
Energy Efficiency Ratio (EER)
Seasonal Energy Efficiency Ratio (SEER)
Coefficient of performance (COP)
Compelling metrics:

r-value of insulation

vs.

Building heat loss to outside after 5 hours

Renovating Regulation to Electrify Buildings: A Guide for the Handy Regulator

By Jessica Shipley, Dr. AnaHopkins, Kenji Takahashi and David Harnsverth
What do we want to do with building efficiency and electrification?

Get it right!
Design pricing to reflect grid management needs at multiple levels:

- Regional
- Utility
- Zonal
- Nodal
- Circuit
Beneficial Electrification Reduces a) energy costs & demand, b) emissions, and (c) customers’ costs
Advanced Energy Technologies Enable Beneficial Electrification

Advanced Energy Technologies Allow Regulators, Consumers, and the Market to Reduce Costs & Emissions
From Optimizing Solar Plus Storage …

The figure shows the distribution of average monthly billing demand reductions across all building types, locations, solar sizes, and storage sizes. Each data point is the average percentage reduction, for a single load/solar/storage combination, across all months of the 17 year historical weather period.

Uncontrolled Household Loads Add Up

![Diagram showing peak demand by category]

- Lights / Minor Appliances: 3 kW
- Major Appliances: 4.5 kW
- Water Heat: 4.4 kW
- EV: 6.6 kW
- Space Conditioning: 4 kW

Total Peak Demand: 22.5 kW
High-efficiency Heat Pump with Air Exchangers
Ice Storage

PEAK DEMAND (KW)

4
Grid-Integrated Heat Pump Water Heater

PEAK DEMAND (KW) 4.4
Controlled Water Heaters

The CTA 2045 socket enables any control network to connect to any new water heater.
Smart Appliances

PEAK DEMAND (KW)

MAJOR APPLIANCES

4.5
Flexibility Dramatically Cuts Peak Demand

Shift EV, Water Heat, Major Appliances, and Pre-Condition Spaces

Peak Demand (kW)

- Lights / Minor Appliances: 3.6 kW
- Major Appliances: 4.4 kW
- Water Heat: 6.6 kW
- EV: 4.45 kW
- Space Conditioning: 22.5 kW

Image credit: https://electricpower.com/powerpod/
Retail Pricing and Price-Responsive Demand
Fort Collins: Smart Residential Rate

<table>
<thead>
<tr>
<th></th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Charge</td>
<td>$6.78</td>
<td></td>
</tr>
<tr>
<td>Off-Peak</td>
<td>$0.069</td>
<td>$0.067</td>
</tr>
<tr>
<td>On-Peak</td>
<td>$0.241</td>
<td>$0.216</td>
</tr>
<tr>
<td>Tier Charge (Over 700 kWh)</td>
<td>+ $.0194 / kWh</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

Non-Summer (October–April):
- Weekdays only
- Off-Peak hours: 9 PM to 5 PM

Summer (May–September):
- Weekdays only
- Off-Peak hours: 2 PM to 7 PM
- On-Peak hours: 9 PM to 5 PM

Regulatory Assistance Project (RAP)®
BG&E TOU Pilot

Excludes weekends and holidays, which are billed at off-peak rates. Holidays include New Year’s Day, President’s Day, Good Friday, Memorial Day, Independence Day, Thanksgiving, Christmas and the Monday following if any of these holidays fall on a Sunday.
By Using Demand Response to Manage Seasonal Loads

If there is a significant increase in energy prices or energy demand in the summer months, typically between June and September, your PeakRewards device may receive a signal to cycle your air conditioner up to your chosen cycling level (50%, 75% or 100%).

Source: Baltimore Gas & Electric
Reducing Commercial Demand Charges
STEM: 12 kW Savings Off 68 kW Peak
Energy and Environmental Programs

- Encourage beneficial electrification
- Optimize investments over all programs
- Coordinate across programs
About RAP

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org
Resources from RAP

- Beneficial Electrification: 4-part series
- We All Wish We Were More Flexible: Electrification Load as a Grid Flexibility Resource (blog)
- Flexibility for the 21st Century Power System
- Renovating Regulation to Electrify Buildings: A Guide for the Handy Regulator
- Principles of Modern Rate Design
- Blog post - Making a Clean Energy Future and Equitable One
- Energy Infrastructure - Inequities and Policy Solutions
- RAP's newsletter sign-up