Cost-Based Rate Design Reforms for the Modern Grid

2022 Affordability Rulemaking En Banc Hearing

California Public Utilities Commission

Mark LeBel
Associate
Regulatory Assistance Project (RAP)®
Why and How Do We Regulate Utilities?

- Public policy goals
 - Efficient competition and control of monopoly behavior
 - Environmental and public health requirements
 - Societal equity (e.g., universal access and affordability)
- Principles for setting utility prices
 - Effective recovery of the revenue requirement
 - Revenue and bill stability
 - Customer understanding and acceptance
 - Equitable allocation of costs
 - Efficient forward-looking price signals
My Guiding Principles

- Long-run marginal costs are a key part of the picture
- Time-varying rates are important, but complicate comparisons
- A primary purpose of utility regulation is to protect customers from price discrimination based on lack of other choices
- Gradualism is helpful and necessary for all customers
- Every option involves tradeoffs
Technology Changes

- Wind, solar and storage
- Customer-sited generation
- Energy efficiency
- Demand response
- Smart grid with big data
- Electrification of transportation and heating
Illustrative Example of Gross vs. Net Load
Three Cost-Based Reforms for California

• Daytime hours in TOU rates should be off-peak with lowest kWh prices
• Site infrastructure charge for line transformer and secondary voltage network costs
• Distribution flow charge to spread primary voltage distribution backbone costs over all imports and exports
TVR Patterns Should Follow Forward-Looking Marginal Costs
Site Infrastructure Charge

• Much lower load diversity at customer end of distribution system
Burbank Service Size Charges

• Base customer charge: $9.21/month
• Tiered service size charges
 • Multifamily: $1.40/month
 • 200A panel or smaller: $2.83/month
 • Panel over 200A: $8.48/month
Électricité de France Tarif Bleu- kVA Subscription Charges

<table>
<thead>
<tr>
<th>kVA Subscription Level</th>
<th>Euros per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>15.11 euros</td>
</tr>
<tr>
<td>12</td>
<td>18.27 euros</td>
</tr>
<tr>
<td>15</td>
<td>21.15 euros</td>
</tr>
<tr>
<td>18</td>
<td>23.31 euros</td>
</tr>
<tr>
<td>30</td>
<td>35.14 euros</td>
</tr>
<tr>
<td>36</td>
<td>41.16 euros</td>
</tr>
</tbody>
</table>

Approximately 1 euro per kVA with 6-euro base customer charge
Modern Grid is Built for Flows

Key Features of Distribution Flow Charge

- DER customers pay for primary voltage distribution backbone costs on both imports and exports in non-discriminatory manner
- Natural method to design pricing system with higher import kWh prices than export kWh credits
- Higher billing determinant for DER customers leads to a lower effective rate for all customers for the relevant costs
Advanced Residential Rate Design

<table>
<thead>
<tr>
<th>Cost Recovery Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Customer Charge ($/mo.)</td>
</tr>
<tr>
<td>Site Infrastructure Charge ($/individual NCP kW)</td>
</tr>
<tr>
<td>Distribution Flow Charge (Cents/kWh on imports and exports)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetric Charges and Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day-time (cents/kWh)</td>
</tr>
<tr>
<td>Mid-peak (cents/kWh)</td>
</tr>
<tr>
<td>On-peak (cents/kWh)</td>
</tr>
<tr>
<td>Critical peak (cents/kWh)</td>
</tr>
</tbody>
</table>
About RAP

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org