

February 8, 2018

Getting Started: Rethinking Utility Regulation in an Era of Exponential Change

RAP Roundtable Webinar

Regulatory Assistance Project www.raponline.org

Questions?

Please send questions through the Questions pane

File View Help ⊕ - □ □ ×	1
▼ Audio 🖸	(<u></u>
Sound Check	
 Computer audio 	1
Phone call	
🖉 MUTED	
Headset Microphone (Logitech \lor	Y
(1)	
Headset Earphone (Logitech Ste \lor	
▼ Ouestions 51	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
[Enter a question for staff]	
[Enter a question for staff]	
[Enter a question for staff] Send Retooling Regulation	
[Enter a question for staff] Send Retooling Regulation Webinar ID: 294-296-827	
[Enter a question for staff] Send Retooling Regulation Webinar ID: 294-296-827 COTo\Wobinar	

Disruptive Forces Transforming Electricity

We are here

Source: Chandu Visweswariah, Utopus Insights Inc.

Our experts

Ken Colburn

Richard Sedano

Jim Lazar

David Farnsworth

John Shenot

Michael Hogan

Falling Price of Renewables

What this means for costs and consumers

Solar Prices Have Declined

Notes: Solid lines represent median prices, while shaded areas show 20th-to-80th percentile range. Summary statistics shown only if at least 20 observations are available for a given year and customer segment.

Sources: Tracking the Sun 10, Lawrence Berkeley National Laboratory and U.S. Department of Energy SunShot program

Declines Have Continued Into 2017

Q3 2017 Quoted PV Prices

Sources: GTM Research and Solar Energy Industry Association

\$/watt-dc

7

Wind Cost Per kWh (US)

Source: US Department of Energy data from http://www.ourworldofenergy.com

Global Best of Class: 2015

Solar PV

Onshore wind

Country:	UAE
Bidder:	AQWA
Signed:	January 2015
Construction:	2017
Price:	US\$ 5.84 c/kWh

USA
Various
2015
2016
US\$ 4.5 c/kWh

Source: Michael Liebreich, presentation to California ISO, October 18, 2017. Data from Bloomberg New Energy Finance; images from Siemens, Wikimedia Commons, and Electrek

Global Best of Class: 2016

Solar PV

Onshore wind

Tim	1	T

Country:	Mexico
Bidder:	FRV
Signed:	2016
Construction:	2019
Price:	US\$ 2.69 c/kWh

Country:	Morocco
Bidder:	Enel Green Power
Signed:	2016
Construction:	2018
Price:	US\$ 3.0 c/kWh

Source: Michael Liebreich, presentation to California ISO, October 18, 2017. Data from Bloomberg New Energy Finance; images from Siemens, Wikimedia Commons, and Electrek

Global Best of Class: 2017

Solar PV

Onshore wind

Country:	Saudi Arabia	Country:	India
Bidder:	Masdar	Bidder:	ReNew Power
Signed:	2017	Signed:	2017
Construction:	2019	Construction:	2019
Price:	US\$ 1.79 c/kWh*	Price:	US\$ 2.0 c/kWh

* Headline figure only - may include elements of subsidy, price support or price escalation; not final

Source: Michael Liebreich, presentation to California ISO, October 18, 2017. Data from Bloomberg New Energy Finance; images from Siemens, Wikimedia Commons, and Electrek

Xcel Energy All-Source Bids, December 2017

RFP Resp	onses b	y Techno	ology
-----------------	---------	----------	-------

			Median Bid				
	# of		# of	Project	Price or		Pricing
Generation Technology	Bids	Bid MW	Projects	MW	Equivalent		Units
Combustion Turbine/IC Engines	30	7,141	13	2,466	\$	4.80	\$/kW-mo
Combustion Turbine with Battery Storage	7	804	3	476		6.20	\$/kW-mo
Gas-Fired Combined Cycles	2	451	2	451			\$/kW-mo
Stand-alone Battery Storage	28	2,143	21	1,614		11.30	\$/kW-mo
Compressed Air Energy Storage	1	317	1	317			\$/kW-mo
Wind	96	42,278	42	17,380	\$	18.10	\$/MWh
Wind and Solar	5	2,612	4	2,162		19.90	\$/MWh
Wind with Battery Storage	11	5,700	8	5,097		21.00	\$/MWh
Solar (PV)	152	29,710	75	13,435	:	29.50	\$/MWh
Wind and Solar and Battery Storage	7	4,048	7	4,048	:	30.60	\$/MWh
Solar (PV) with Battery Storage	87	16,725	59	10,813	:	36.00	\$/MWh
IC Engine with Solar	1	5	1	5			\$/MWh
Waste Heat	2	21	1	11			\$/MWh
Biomass	1	9	1	9			\$/MWh
Total	430	111,963	238	58,283			

Source: Xcel Energy, 2018

Xcel bid median prices \$/MWh

SOLAR

WIND

Existing power plant operating costs per USEIA

Fuel 0&M

Existing Plant Average Fuel and O&M from USEIA Table 8.4 Electric Power Annual 2016

Existing plants vs. Excel bids

Fuel O&M Xcel Bids

\$37/MWh \$30/MWh \$30/MWh \$11 \$25/MWh \$5 \$18/MWh \$18 \$30 \$26 \$25 **\$18 \$7** COAL GAS SOLAR NUCLEAR WIND

Existing Plant Average Fuel and O&M from USEIA Table 8.4 Electric Power Annual 2016

Xcel Was Not Alone

Oklahoma, 2017 Wind Catcher 2,100 MW \$7 billion in savings

Mexico, 2017 Solar: \$17.70/MWh Wind: \$22/MWh

Comisión Federal de Electricidad

Photo: GE Renewable Energy

2 Flexibility and Pricing

The evolving value of investment

Key Points

- Flexible services moving to center stage
- Greater range of services required
- Shifting money from capacity remuneration to remuneration for energy and services...
- ...amplifying real-time prices to better capture the value of flexible resources - supply & demand side
- C&I customers and retail aggregators should see more opportunity to reshape the demand curve

Wind Production in Ireland

Nov-Dec 2016 non-synchronous infeed to All-Ireland Grid

Source: EirGrid

More Capital-Intensive...in Energy Services

Demand for Wider Range of Energy Services

Current

Proposed

Source: ERCOT Future Ancillary Services

"New resource mix will change both the <u>need</u> for [ancillary services] and the <u>capabilities</u> of resources providing [ancillary services]."

> ERCOT Presentation September 2017

Improving Price Formation

ELMP complements products like ramp by better pricing the total production costs to meet an operating need indicated by a product

- Without ELMP, Ramp reflects only marginal cost
- Without Ramp, ELMP reflects only energy needs

Hourly Balancing Reserves Requirement

Price Duration in a 70% RES Grid

Flexibility Changes Everything

Changes in the Electric Industry

- New technologies
 - EVs, heat pumps, and HP water heaters
- New interactive choices for utility customers to consume and produce

Beneficial Electrification Defined

- Electrification is beneficial if it meets one or more of three conditions, without adversely affecting the other two:
- Saves consumers money over the long run;
- Reduces environmental impacts; and
- Enables better grid management.

What Sort of Load are we Talking About?

- Relative Efficiency of Electrification Load
 - Heat pump water heaters move heat instead of generating it – 1.5 - 3X more efficient
 - EVs vs. gasoline passenger cars (60% vs. 20%)

What Sort of Load are we Talking About?

- More Flexible Load:
 - Traditionally, generation followed load for virtually immediate consumption
 - Today, because it can be stored (thermally or electrically) some load can follow generation
 - Flexible load is valuable

Unlike this Inflexible Load ...

... BE Load Can Fill Valleys and Shave Peaks

Source: E Source, adapted from Integral Analytics Inc.

Valuable for Reducing Curtailments

Note: All curtailment percentages shown in the figure represent both forced and economic curtailment. PJM's 2012 curtailment estimate is for June through December only.

"2016 Wind Technologies Market Report," Ryan Wiser and Mark Bolinger, Lawrence Berkeley National Laboratory

Virtual Power Plants: The Business of Aggregating Buildings with Batteries

Capabilities

August 28, 2017 Stem dispatches 14 *Virtual Power Plants* (VPPs) to support the grid during a heatwave.

Source: Stem

SmartCharge New York

Source: https://www.fleetcarma.com/smartchargenewyork/

SmartCharge New York

Source: https://www.fleetcarma.com/smartchargenewyork/

4 Resilience

What goes down, must come up

What is Resilience?

 The ability to withstand and reduce the magnitude or duration of disruptive events

Anticipate, adapt, and rapidly recover

Source: National Infrastructure Advisory Council (2009), *Critical Infrastructure Resilience Final Report and Recommendations*.

This map denotes the approximate location for each of the 16 billion-dollar weather and climate disasters that impacted the United States during 2017.

The Grid Resiliency Pricing Rule

24% of North American utility executives believe there is a "significant likelihood" (>20%) of a cyber attack interrupting electricity supply in the next 5 years

Source: Accenture Consulting (2017), Outsmarting Grid Security Threats

Beneficial Electrification Makes Us Even More Dependent on the Grid

INCREASING ENERGY SECURITY AND RESILIENCE ACROSS ARMY INSTALLATIONS

Example: Salt Lake City

- First "net zero energy" public safety building in US (pictured)
- 30% of panels wired to provide electricity to the building during grid outages

Example: Duluth

- Hartley Nature Center (city-owned facility) retrofitted with solar+storage
- Serves as Emergency Base of Operations for the city

DOE Toolkit: Building Resilience with Solar+Storage

Compendium of resources and case studies at:

http://solarmarketpathways.org/innovation/resilience/

Examples of Resilience Issues for State Utility Regulators

- Prudence of grid-hardening investments
- Distribution system planning/grid modernization
- Utility vs. third-party ownership of distributed generation, storage, and microgrids
- Tariff design for microgrids
- Interconnection standards and processes

Questions?

Please send questions through the Questions pane

File View Help ⊕ □ □ ×	-
▼ Audio 🖸	(<u></u>
Sound Check	
 Computer audio 	1
O Phone call	
🖉 MUTED	
Headset Microphone (Logitech \lor	•
(1)	
Headset Earphone (Logitech Ste $$	
▼ Ouestions 51	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
Send	
Send Retooling Regulation	
Send Retooling Regulation Webinar ID: 294-296-827	
Retooling Regulation Webinar ID: 294-296-827	

Conclusions

Where regulators can align power sector transformation with the public interest:

- In structuring and operation of more open, transactive electricity markets;
- In new approaches to rate design and transparent price formation; and
- In business models used to provide clean, affordable, and resilient energy services to consumers.

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Contact us at info@raponline.org