


# Introduction to Regional Transmission Organizations for State Air Regulators

Briefing for State Air Quality Regulators by the Regulatory Assistance Project and the Great Plains Institute September 11, 2015

# Housekeeping

Please send questions through the Questions pane.



# **Our Experts**



David Littell, Regulatory Assistance Project



Doug Scott, Great Plains Institute

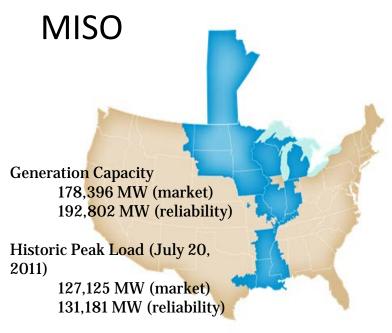
# **Our RTO Experts**



Paul Sotkiewicz, PJM



Kari Evans Bennett, MISO


### **Presentation Overview**

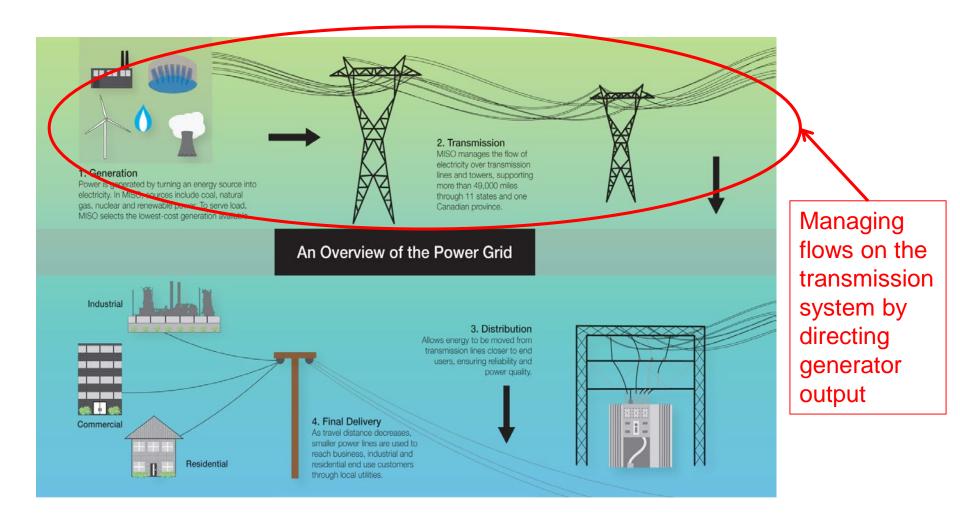
- Nature and Purpose of Regional Transmission Organizations (RTOs)
- Key RTO Functions and Benefits
- Evolution of the Electricity Grid
- Overview of Least-cost Generation Dispatch and the Formation of Market Clearing Prices
- Economic Benefits of RTOs
- Emissions Effects of Least-cost Dispatch and Interconnected Systems like of RTOs
- Implications for Clean Power Plan (CPP) Planning
- Recommendations

# Nature and Purpose of RTOs

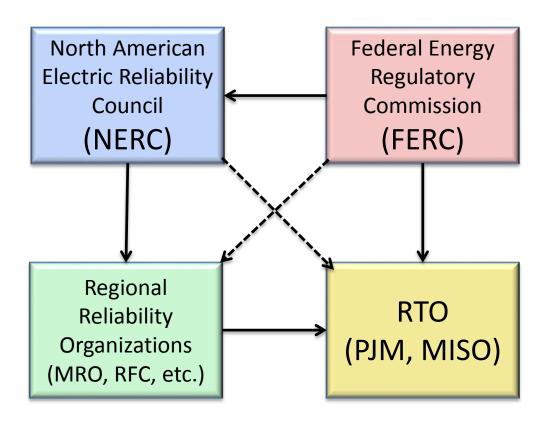
- What is a Regional Transmission Organization (RTO)?
- What do we have RTOs do?
- How can RTOs assist with CPP planning, reliability assessments, etc.?

# MISO & PJM Generation Dispatch and Reliability Regions




65,800 miles of transmission 15 States 1 Canadian Province City of New Orleans



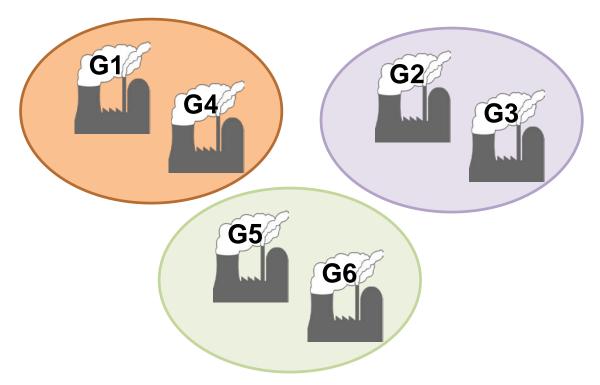



As of 1/1/2014

# The RTO's Role in the Electricity System

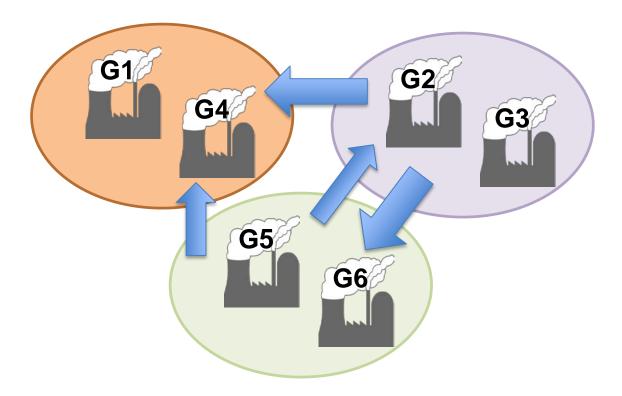


## Who Oversees RTOs?



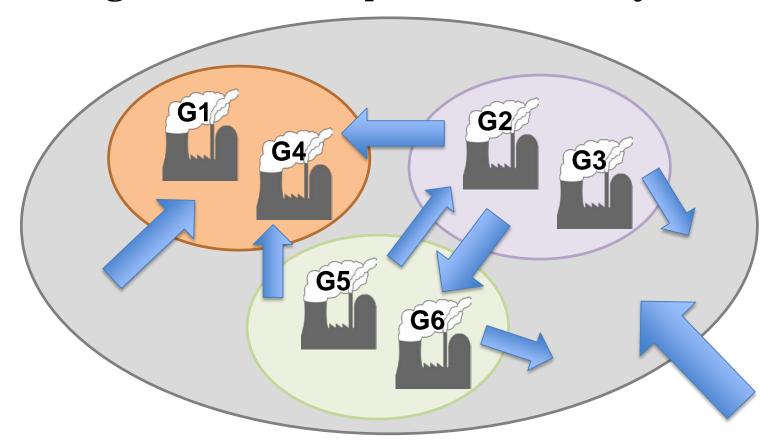

# **Key RTO Functions and Benefits**

| What RTOs Do                                                  | Implications                                                                              |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Provide non-discriminatory open access transmission service   | Facilitates competition between generation resources                                      |
| Platform for wholesale energy and capacity markets            | Incentivizes efficient and cost-effect generation dispatch, and new generation investment |
| Perform system operations through energy markets              | Least-cost dispatch that accounts for reliability needs                                   |
| Long-term transmission planning, resource adequacy constructs | Enhanced long-term reliability                                                            |


# Evolution of the Grid: In the Beginning...

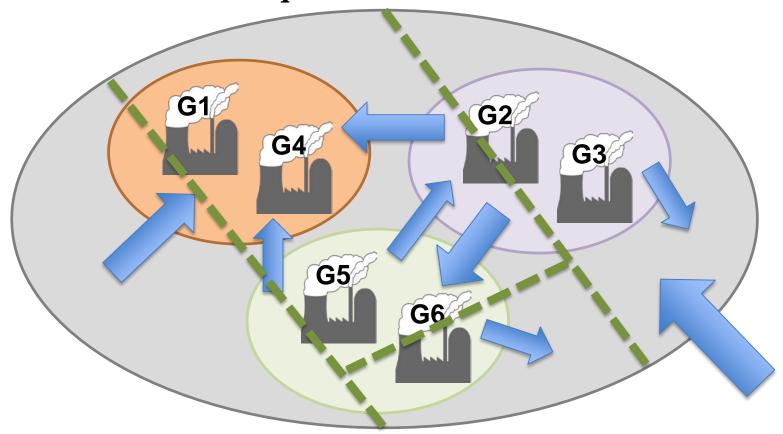
Each utility system serves its own geography and generates to meet its own load as if it were an island




# Evolution of the Grid: Systems Began to Share

Interconnecting of systems making bilateral power sharing arrangements to reduce costs and enhance reliability...but operated as separate systems




# Evolution of the Grid: Systems Formed a Pool

Utility systems enter into power-pooling arrangements to be operated as one system



# Evolution of the Grid: Pools to ISOs/RTOs

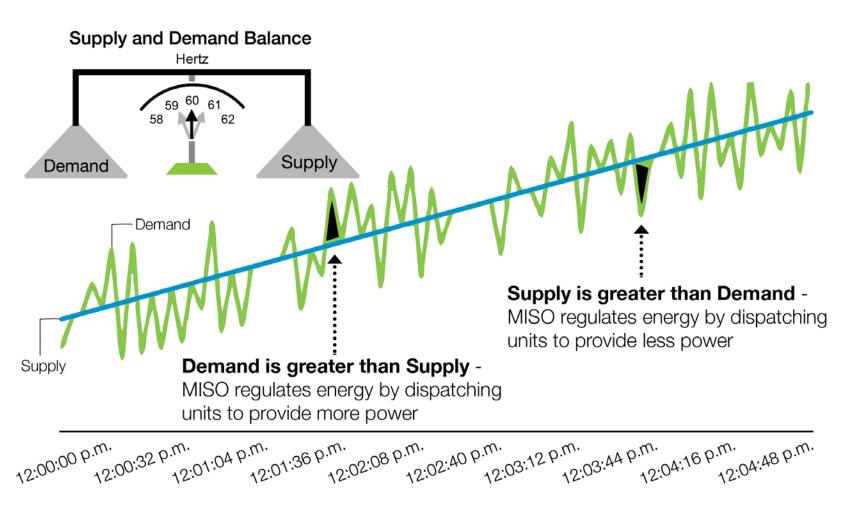
Even though state boundaries exist, even tighter coordination of operations to the benefit of all



# Map of U.S. RTOs Today



# **Questions?**


Please send questions through the Questions pane



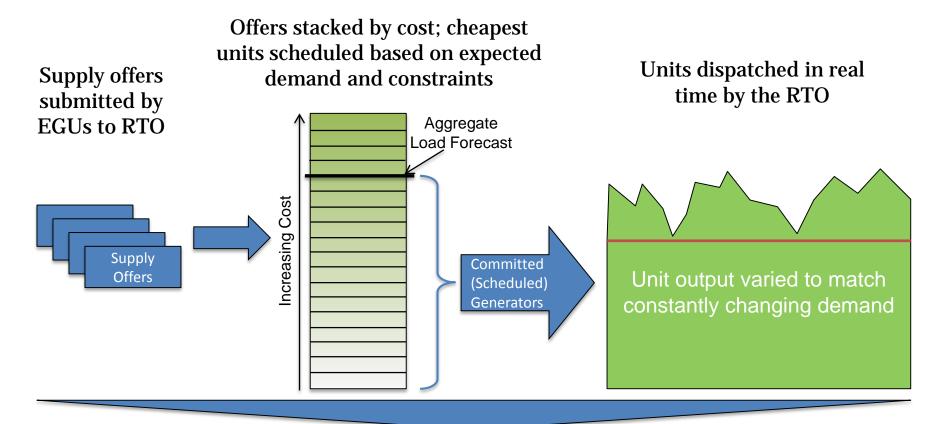
# System Operations through Least-Cost Dispatch while Respecting Generation, Transmission, or Regulatory Constraints

- System operations conducted through dispatch of generation that minimizes bid production cost while respecting generator and transmission or regulatory constraints:
  - Balance supply and demand
  - Physical limits of transmission facilities
  - Reserves and other reliability requirements
  - Power quality requirements (e.g., voltage levels, frequency)
  - Generators' schedules (e.g., maintenance outages)
  - Emissions limitations or hours-of-operation constraints
  - Other physical, regulatory, or market requirements

# Balancing Electricity Supply and Demand Moment to Moment

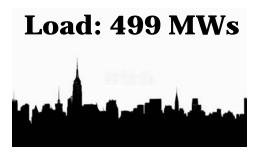


# Offers to Supply from Generators Facilitate Least Cost Dispatch and System Operation




- Utilities seek to dispatch their systems at least cost
- Applies to vertically integrated utilities as well as organized markets

What goes into generators' bid?


- Fuel
- Variable O&M
- Emissions Costs

# Overview of Generation Dispatch

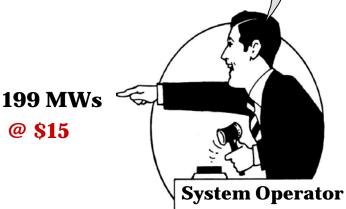


- EGU availability (limits, retirement) affects the amount of supply offered to meet demand
- Changing EGU costs (and thus offers) affect frequency and magnitude of utilization in RTO
- Utilization of EGUs directly impacts fuel usage, and thus emissions produced by each EGU

# Least-Cost Dispatch (i.e., "Dispatch Stack")...Minimize Bid Production Cost



Production cost = ((300x\$10) + (199x\$15)) =\$5,985


Using Gen C would only increase production cost since its bid is higher than Gen A or B.

#### **Generator C**

**Capacity: 200 MWs Bid: \$20/MWh**  Not

**Dispatched** 

Sold to the lowest offer with adequate capacity...



#### Generator B

**Capacity: 200 MWs Bid: \$15/MWh** 

**Generator A** 

**Capacity: 300 MWs Bid: \$10/MWh**  **300 MWs** 

**@ \$10** 

**@ \$15** 

# Market Clearing Price is the Marginal Cost of Delivering One More MW to the System



Generator C
Capacity:

200 MWs Bid: \$20/MWh

**Generator B** 

**Capacity:** 

200 MWs Bid: \$15/MWh Not Dispatched

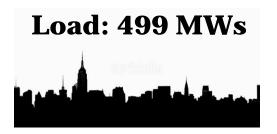
199 MWs

@ \$15

**Generator A** 

Capacity: 300 MWs Bid: \$10/MWh **300 MWs** 

**@ \$10** 


Cost (Bid) of Marginal Unit = \$15/MWh, and it is the last unit dispatched so...

Market Clearing Price = \$15/MWh, so...

Energy Market Cost = (499 MWh x \$15/MWh) = <u>\$7,485</u>

Production cost = ((300x\$10) + (199x\$15)) = \$5,985

# Payments by Load to Generation



**Generator C** 

**Capacity: 200 MWs** Bid: \$20/MWh

**Generator B** 

**Capacity:** 

**200 MWs** 

Bid: \$15/MWh

199 MWs

@ \$15

**Generator A** 

**Capacity: 300 MWs** 

Bid: \$10/MWh

Not Dispatched

@ \$10

**300 MWs** 

All energy is transacted at the market clearing price, so...

Load energy payment = (499 MWh x \$15/MWh) =\$7,485

Gen A revenue = ((300x\$15) = \$4500

Gen B revenue = (199x\$15)=\$2985

Load Increases by 2 MW...Requires Higher Cost
Generation to Serve Load

Sold to the lowest offer



Production cost = ((300x\$10)+(200x\$15)+(1x\$20)) = \$6,020 (only marginally higher)

Only need one MW from Gen C after running out of capacity from lower cost units

Cost (Bid) of Marginal Unit = \$20/MWh, so...

Market Clearing Price = \$20/MWh

#### **Generator C**

Capacity: 200 MWs Bid: \$20/MWh **1 MW** 

@ \$20

#### **Generator B**

Capacity: 200 MWs Bid: \$15/MWh **200 MWs** 

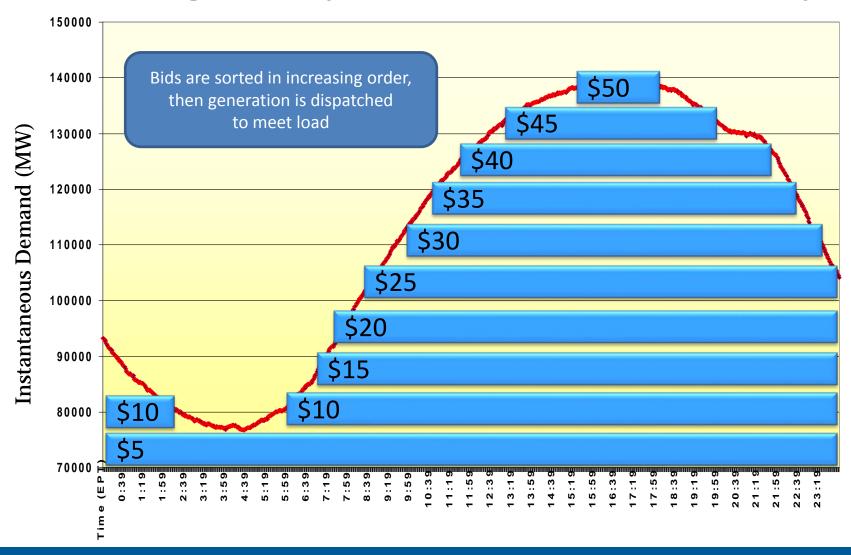
@ \$15

#### **Generator A**

Capacity: 300 MWs Bid: \$10/MWh **300 MWs** 

@ \$10

Load energy payment = (501 MWh x \$20/MWh) = \$10,020


Gen A Revenue = 300 MWh \* \$20/MWh = \$6000

with adequate capacity...

Gen B Revenue = 200 MWh \* \$20/MWh = \$4000

Gen C Revenue = 1 MWh \* \$20/MWh = \$20.

# Matching Supply to Demand Over the Day



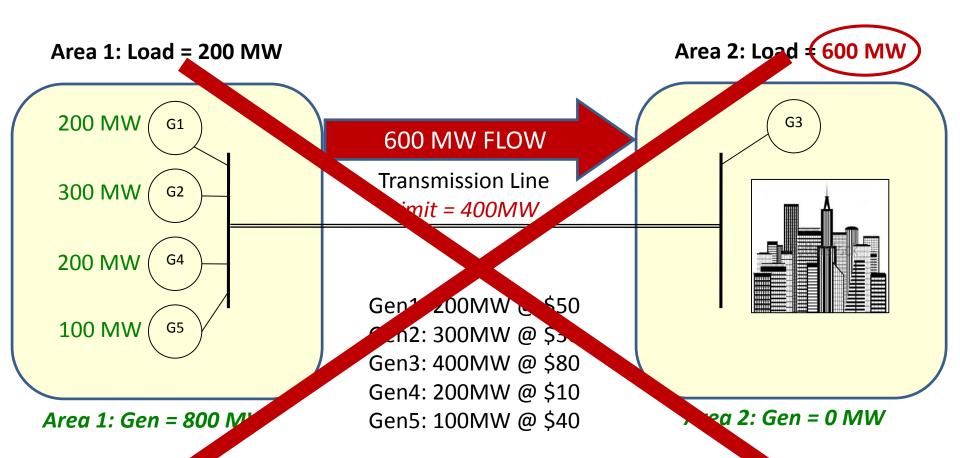
# Generation Dispatch Over Multiple Areas (1)

(e.g., This could be two states in an RTO)

Area 1: Load = 200 MW

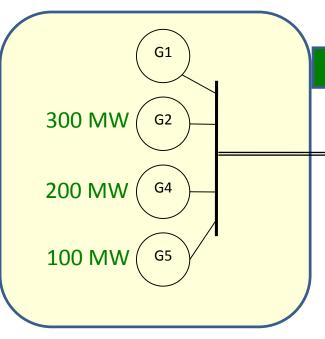





Area 1: Gen = 600 MW

Market Clearing Price in both areas is \$40/MWh Load Payment in Area 1 = \$8000 Load Payment in Area 2 = \$16000

Area 2: Gen = 0 MW @ \$100


Gen 2 paid \$12000 Gen 4 paid \$8000 Gen 5 paid \$4000

# Generation Dispatch Over Multiple Areas (2)



# Generation Dispatch Over Multiple Areas (3)

**Area 1: Load = 200 MW** 



#### Area 1: Gen = 600 MW

Market Clearing Price Area 1 = \$40/MWh Market Clearing Price Area 2 = \$80/MWh Load Payment in Area 1 = \$8000, Area 2 = \$48000

Transmission Line *Limit = 400MW* 

400 MW FLOW

Gen1: 200MW @ \$50

Gen2: 300MW @ \$30

Gen3: 400MW @ \$80

Gen4: 200MW @ \$10

Gen5: 100MW @ \$40

200 MW

Area 2: Load = 600 MW

Area 2: Gen = 200 MW @ 100

Gen 2 paid \$12000 Gen 4 paid \$8000 Gen 5 paid \$4000

Area 2 Gen Paid \$20000

# Economic Benefit RTO Interconnection (1)

System 1

Load: 500 MWs



System 1 Clearing Price = \$15/MWh...

**Production** 

Cost =

(300\*\$10) +

(200\*\$15) =

\$6000

**Isolated Systems** 

**Generator C** 

Capacity: 200 MWs

Bid: \$18/MWh

**Generator B** 

Capacity: 200 MWs

Bid: \$15/MWh

**Generator A** 

Capacity: 300 MWs

Bid: \$10/MWh

**@** \$18

0 MW

200 MWs

@ \$15

300 MWs

@ \$10

Generator F

Capacity: 200 MWs

Bid: \$40/MWh

**Generator E** 

Capacity: 300 MWs

Bid: \$25/MWh

**Generator D** 

Capacity: 300 MWs

**Bid: \$12/MWh** 

System 2

Load: 500 MWs

**200 MWs** 

@ \$25

0 MW

@ \$40

<sup>1D</sup> 300 MWs

@ \$12

System 2 Clearing Price = \$25/MWh...

Production

Cost = (300\*\$12) + (\$200\*\$25) =

\$8600

Total Energy Load Payment for Both Systems: \$20,000

# Economic Benefit RTO Interconnection (2)





Interconnected Clearing Price = \$18/MWh... Production Cost 1 = (300MWh x \$10/MWh) + (200 MWh x \$15/MWh) + (200 MWh x \$18/MWh) = \$9,600

### **Interconnected Systems**



ia: \$18/iviwr

**Generator B** 

Capacity: 200 MWs Bid: \$15/MWh

Generator A
Capacity:
300 MWs
Bid: \$10/MWh

200 MW @ \$18

200 MWs @ \$15

300 MWs @ \$10 Generator F
Capacity:

200 MWs Bid: \$40/MWh

Generator E

Capacity: 300 MWs

Bid: \$25/MWh

Generator D
Capacity:
300 MWs

300 MWs Bid: \$12/MWh System 2

Load: 500 MWs



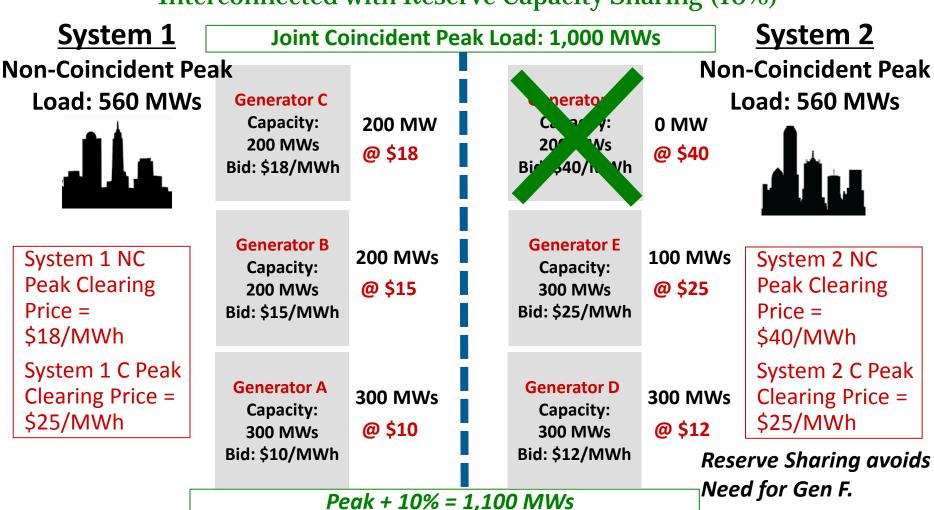
0 MWs @ \$25

**300 MWs** 

@ \$12

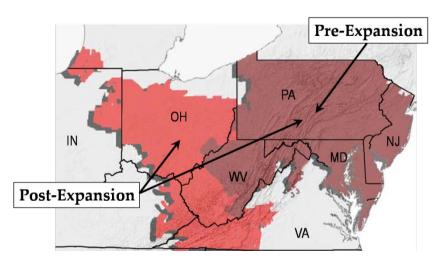
0 MW

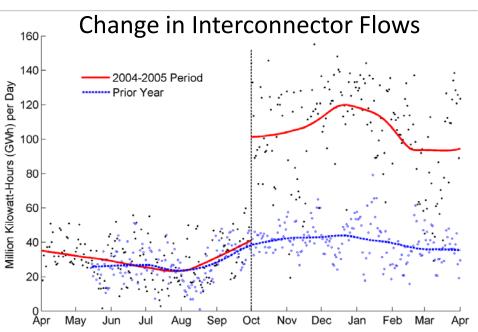
@ \$40


Interconnected Clearing Price = \$18/MWh...

Production Cost 2 = (300 MWh x \$12/MWh) = \$3600

Total Energy Load Payment for Both Systems: \$18,000 (saving \$2,000 or 10%)


# Economic Benefit RTO Interconnection (3)


**Interconnected with Reserve Capacity Sharing (10%)** 



# **Example: PJM Market Expansion**

Integration of AEP, Dayton, and ComEd into the PJM Market





#### **Key Conclusions:**

- Incremental benefit = \$180 Million annually; Net Present Value of \$1.5B over 20 years
- Bilateral trading could only achieve 40% of the efficiency gains of centralized dispatch

Source: Erin T. Mansur and Matthew W. White, "Market Organization and Efficiency in Electricity Markets," March 31, 2009, Figure 2, pg 50, discussion draft, (available at http://bpp.wharton.upenn.edu/mawhite/).

# **Emissions Impacts of RTO Interconnection (1)**

#### **Individual States**

#### State 1

Load: 500 MWs



State 1 CO, emissions:

(270 + 150 + 0) =

**420** tons

#### **Generator C**

**Capacity: 200 MWs** Bid: \$18/MWh CO<sub>2</sub>: 1200 #/MWh

#### **Generator B**

**Capacity: 200 MWs** Bid: \$15/MWh CO<sub>2</sub>: 1500 #/MWh

**Generator A** 

**Capacity: 300 MWs** Bid: \$10/MWh CO<sub>2</sub>: 1800 #/MWh

0 MWs @ \$18

0 tons CO<sub>2</sub>

#### **200 MWs**

@ \$15

**150** tons CO<sub>2</sub>

**300 MWs** 

@ \$10

**270 tons** CO<sub>2</sub>

#### **Generator F Capacity:**

**200 MWs** Bid: \$40/MWh CO<sub>2</sub>: 900 #/MWh

#### **Generator E**

Capacity: **300 MWs** Bid: \$25/MWh CO<sub>2</sub>: 1100 #/MWh

#### **Generator D**

300 MWs Bid: \$12/MWh CO<sub>2</sub>: 1500 #/MWh

0 MWs @\$40 0 tons CO,

**200 MWs** @ \$25 **110** tons CO<sub>2</sub>

@ \$12

**225** tons

CO,

Capacity:

### State 2

Load: 500 MWs



State 2 CO<sub>2</sub> emissions:

(225 + 110 + 0) =

*335 tons* **300 MWs** 

Total Emissions for Both States: 755 tons

# **Emissions Impacts of RTO Interconnection (2)**

#### States Interconnected in an RTO





System 1 CO<sub>2</sub> emissions: (270 + 150 + 120) =

**540** tons

#### **Generator C**

Capacity: **200 MWs** Bid: \$18/MWh CO<sub>2</sub>: 1200 #/MWh

#### **Generator B**

**Capacity: 200 MWs** Bid: \$15/MWh CO<sub>2</sub>: 1500 #/MWh

#### **Generator A**

**Capacity: 300 MWs** Bid: \$10/MWh CO<sub>2</sub>: 1800 #/MWh

#### 200 MWs @ \$18

**120** tons CO<sub>2</sub>

### 200 MW

@ \$15 **150** tons CO<sub>2</sub>

**200 MWs** 

### **300 MWs**

@ \$10 **270 tons** CO<sub>2</sub>

#### **Generator F Capacity:**

**200 MWs** Bid: \$40/MWh CO<sub>2</sub>: 900 #/MWh

#### Generator E

Capacity: **300 MWs** Bid: \$25/MWh CO<sub>2</sub>: 1100 #/MWh

#### **Generator D**

Capacity: 300 MWs Bid: \$12/MWh CO<sub>2</sub>: 1500 #/MWh

#### State 2

Load: 500 MWs



0 MWs System 2 CO<sub>2</sub> @ \$25 emissions:

> (225 + 0 + 0) =**225** tons

**300 MWs** @ \$12

0 MWs

@\$40

0 tons

CO,

0 tons

CO<sub>2</sub>

**225** tons CO<sub>2</sub>

Total Emissions for Both States: 765 tons (10 tons more), higher in State 1, lower in State 2

# **Emissions Impacts of RTO Interconnection (3)**

#### States Interconnected in an RTO





System 1 CO<sub>2</sub> emissions: (270 +150 +80) =

**500** tons

#### Generator C

Capacity: 200 MWs Bid: \$18/MWh CO<sub>2</sub>: 800 #/MWh

#### **Generator B**

Capacity: 200 MWs Bid: \$15/MWh CO<sub>2</sub>: 1500 #/MWh

#### **Generator A**

Capacity:
300 MWs
Bid: \$10/MWh
CO<sub>2</sub>:
1800 #/MWh

200 MWs @ \$18

80 tons

#### 200 MW

200 MWs @ \$15 150 tons CO<sub>2</sub>

300 MWs

@ \$10 270 tons

CO<sub>2</sub>

## **Generator F Capacity:**

200 MWs
Bid: \$40/MWh
CO<sub>2</sub>:
900 #/MWh

#### Generator E

Capacity:
300 MWs
Bid: \$25/MWh
CO<sub>2</sub>:
1100 #/MWh

#### **Generator D**

Capacity:
300 MWs
Bid: \$12/MWh
CO<sub>2</sub>:
1500 #/MWh

#### State 2

Load: 500 MWs



0 MWs @ \$25

0 tons em

300 MWs @ \$12

0 MWs

@\$40

0 tons

CO,


225 tons CO<sub>2</sub> System 2 CO<sub>2</sub> emissions:

(225 + 0 + 0) =225 tons

Total Emissions for Both States: 725 tons (40 tons less overall)

# **Questions?**

Please send questions through the Questions pane



# Implications for CPP Planning

- Regional markets dispatch EGUs on the basis of cost, providing economic and reliability benefits
- The Clean Power Plan will internalize carbon costs; this will affect a regional market's "economic merit order" (EGU dispatch order):
  - Generally, EGUs with higher emissions will be more costly to use
- Modifications to dispatch order may cause electricity generation and emissions to:
  - Occur in different amounts
  - Occur in different geographic locations (sometimes in different states)
- Decision-makers will need to determine:
  - Relative advantage of compliance plan structure & path (mass or rate)
  - Benefits of coordinating compliance plans with neighboring states
  - Multi-pollutant ramifications

## Recommendations

- Communicate closely with RTO staff and other states in your RTO in developing your CPP plan
- States with multiple RTOs: additional burden, but planning dialogue still necessary
- Recognize and try to preserve economic and reliability benefits of regional coordination
- Fashion carbon policy that best preserves these attributes
- System modeling will likely be required
  - Can do state-only with spreadsheets, but system modeling likely necessary for regions

# **Questions?**

Please send questions through the Questions pane



## **Conclusions**

- RTOs run their respective regional grids to provide reliability and efficient system operations,
- RTOs provide and manage regional energy markets to minimize energy production costs,
- RTOs perform long-term transmission systems and market planning to ensure energy resource adequacy, and
- The regional coordination by RTOs suggests that both reliability and economic costs associated with CPP compliance may well be most effectively addressed regionally.

### Thank You for Your Time and Attention

#### **About RAP**

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts focused on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies to:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at <a href="https://www.raponline.org">www.raponline.org</a>

David Littell: <u>dlittell@raponline.org</u>

Doug Scott: <a href="mailto:dscott@gpisd.net">dscott@gpisd.net</a>

Ken Colburn: kcolburn@raponline.org



#### The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • Montpelier, Vermont USA • New Delhi, India