

Pricing Options Where Advanced Metering Infrastructure Has Not Been Fully Deployed

Jim Lazar Senior Advisor

September 5, 2013

The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org

RAP Publications on Rate Design

- RAP has published several papers on rate design:
 - Charging for Distribution Utility Services: Issues in Rate Design
 - Revenue Regulation and Decoupling: A Guide to Theory and Application
 - Rate Structures for Customers with Onsite Generation: Practice and Innovation
 - Pricing Do's and Don'ts
 - Standby Rates for Customer-Sited Resources: Issues, Considerations and the Elements of Model Tariffs
- In the 2011- 2013 Global Best Practices Series:
 - Time-Varying and Dynamic Rate Design (Faruqui)
 - Rate Design Where Advanced Metering Infrastructure Has Not Been Fully Deployed (Lazar)
- This paper is a companion to the second, and looks at what can be done **without** AMI.

What Does This Rate Design Say?

Eat more ice cream!

Energy solutions for a changing world

Some Basic Rate Design Terminology

- **Customer Charge**: A monthly charge that applies independent of consumption. Also called a Basic Charge, Standing Charge, Meter Charge.
- Energy Charge: A price per kWh; may be in more than one time period, or more than one block.
- **Demand Charge:** A monthly fee based on the highest instantaneous usage rate (usually highest hour) during the month or year.

Residential Rate Types From Simple to Complex

- Flat Rate: Uniform rate per kWh for all usage.
- **Inclining Block:** two or more blocks of usage, with incremental usage at a higher price.
- TOU: Two or more Time Of Use periods, with higher prices during higher-cost periods.
- **TOU with Inclining Block**: A TOU rate that includes a lower price for lower levels of usage.
- Critical Peak: A TOU price that has a much higher price for a limited number of hours. [Requires AMI]
- Real-Time Price (RTP): A price that changes frequently with market conditions. [Requires AMI]

Current Trend: Seeking Higher Customer Charges

Utilities across the country are seeking higher monthly fixed (basic) charges.

San Diego G&E (Proposed): \$38.42

Customer Charges: Largest US Utilities					
Pacific Gas & Electric Co	CA	1	None		
So Cal Edison	CA	\$	0.87		
Public Service E&G	NJ	\$	2.43		
Detroit Edison Co	MI	\$	6.00		
Virginia Electric Power	VA	\$	7.00		
Florida Power & Light Co	FL	\$	7.24		
Georgia Power Co	GA	\$	9.00		
Commonwealth Edison Co	IL	\$	15.06		
Consolidated Edison	NY	\$	15.76		

These utilities serve one in six Americans.

What's Wrong With High Customer Charges?

- Few costs are really "fixed."
- Reduces the per-kWh rate, which encourages consumption.
- Punitive to apartment dwellers and urban residents.
- Other options for revenue stability available, including decoupling.

The Most Common Residential Rate Design: Inclining Block

- Globally, the most common residential rate design was the inclining block rate.
- Most have zero or very low customer charges.
- Goals include:
 - Allocation of limited low-cost resources
 - Recognition of declining load factor as usage increases
 - Encouragement of conservation
 - Providing for essential needs at affordable cost
 - Benefit to low-income consumers

How an Inclining Block Rate Affects Most Consumption

		kWh Usage			Total Block Sales Including Sales to	
		by Customers	% of Sa	les to	Customers	
		Ending in	Customer Using		Exceeding	% of Sales In
	Bills	Block	More than	n Block	Block Limit	Block
0 - 250	154,281	22,705,353		92%	118,791,853	42%
250 - 500	176,985	64,370,066		69%	71,964,066	25%
500 - 750	94,209	57,617,207		49%	38,800,707	14%
750 - 1,000	49,741	42,864,074		34%	21,411,074	8%
>1,000	63,411	95,831,158	0%		32,420,158	11%
	538,627	283,387,858			283,387,858	

Effect on Usage of Alternative Rate Designs

						High
			In	clining	Сι	ustomer
	Fla	t Rate	Blo	ock Rate	C	Charge
Customer Charge	\$	-	\$	-	\$	25.00
First 250 kWh	\$	0.15	\$	0.1160	\$	0.1025
Over 250 kwh	\$	0.15	\$	0.1740	\$	0.1025
Usage Change With						
Elasticity of -0.2				-2.6%	I	+6.3%

Cost-Based Inclining Block Rate Based on Resource Types

- Start with typical cost of resources
- Determine how much of each the utility has available for the class
- Set blocks to recover costs

Block	kWh	Energy	Delivery	Total
Hydro	250	\$ 0.02	\$ 0.06	\$ 0.08
Coal	251 - 750	\$ 0.04	\$ 0.06	\$ 0.10
New Supply	>750	\$ 0.10	\$ 0.06	\$ 0.16

Cost-Based Inclining Block Rate Based on Load Factor

- Determine Load Factor of Each Usage Block
- Apply a typical Commercial rate:
 \$10/kW/month + \$.08/kWh
- Compute Block Rates

		Load			
Primary Usage	kWh	Factor	Demand	Energy	Total
Lights/Appliances	400	70%	\$ 0.020	\$ 0.08	\$ 0.100
Water Heat	401- 800	40%	\$ 0.035	\$ 0.08	\$ 0.115
Space Conditioning	>800	20%	\$ 0.069	\$ 0.08	\$ 0.149

California

- California IOUs have steeply inclining block rates with low customer charges, as do some POUs.
- Baselines reflect housing type and climate zone.
- CPUC is examining possible changes, including mandatory TOU.

Palo Alto

Customer Charge	None
First 300 kWh	\$0.0954
Next 300 kWh	\$0.1302
Over 600 kWh	\$0.1740

PG&E

Customer Charge	None
Baseline Usage	\$0.1323
101% - 130%	\$0.1504
131% - 200%	\$0.3111
Over 200 %	\$0.3511

SCE

Customer Charge		\$0.91		
Baseline Usage		\$0.1295		
101% - 130%		\$0.1607		
131% - 200%		\$0.2719		
Over 200%		\$0.3110		
Baseline = $270 - 1.200$ kWh/month				

Examples from Other Countries

Country	Blocks	Customer Charge	Head Block	Tail Block
China	3	None	\$.087	\$.136
India	6	None	\$.03	\$.128
Mexico	4	None	\$.056	\$.225
Hungary	2	\$0.87	\$.208	\$.215

Seasonal Rate: Summer or Winter Peaking

- Seasonal rate reflects higher costs in the peak season.
- Most of the US is summer peaking, but some is winter peaking.

Madison Gas and Electric, Wisconsin

		Su	mmer	Wi	nter
Basic Chai	rge	\$ 10.00		\$	10.00
Per kWh		\$	0.152	\$	0.14

Newfoundl				
	Summer			
Per kWh		\$0.0965	\$0.1190	

An Inclining Block Rate CAN BE a Seasonal Rate

Energy solutions for a changing world

Arizona Public Service Seasonal + Inclining Block

- Arizona has a very distinct summer daytime peak, driven by air conditioning load
- Load-Factor Based Inclining Block Rate
- Optional TOU Rate Available

Arizona Public Service Company					
Standard Plan (Optional TOU Available)					
		Winter	Summer		
0 - 400 kWh		\$ 0.0942	\$ 0.0969		
401 - 800 kWh		\$ 0.0942	\$ 0.1382		
801 - 3,000 kWh		\$ 0.0942	\$ 0.1617		
Over 3,000 kWh		\$ 0.0942	\$ 0.1726		

Fixed Period TOU Rates

- Many utilities have introduced fixed-period TOU rates.
- These require interval meters, but not AMI.

Green Mountain Power	Standard Rate	Optional TOU Rate
Customer Charge:	\$11.21	\$16.10
Off-Peak	\$.14669	\$.11343
On-Peak	\$.14669	\$.25522

Fixed-Period TOU Rates With Inclining Block Design

• TOU and Inclining Block features can be combined, by implementing a fixed \$/kWh discount (or surcharge) below (above) the baseline level.

Customer Charge	\$5.00
Off-Peak	\$.10
On-Peak	\$.20
Baseline Credit, First 500 kWh	(\$.04)

Other Alternatives to High Customer Charges

Utility	Approach
Manitoba Hydro	Customer Charge Linked to Panel Size
Fort Collins (optional rate)	Residential Demand Charge \$/kW
Indonesia, France, Italy	Subscription to a demand level

Peak Load Management Without AMI

- Many utilities have peak interruption programs controlled by the utility.
- Midwest coops often REQUIRE that electric water heaters be under utility control.

Southern California Edison Summer Discount Plan

Summer Discount Plan: Maximum Savings/Maximum Comfort

Maximum Savings Off continuously up to 6 hours Maximum Comfort Off 15 out of every 30 minutes for up to 6 hours

Unlimited
(Any # of interruptions
per summer)\$200\$50Limited
(Up to 15 interruptions
per summer)\$100\$25

Peak Reduction vs. Energy Reduction

- Inclining block rates produce the most overall reduction in <u>energy usage</u>.
- Time-varying prices produce <u>peak load</u> reduction, but may or may not reduce total energy use.
- More complex rates work best with technology enablement.

Peak Load Benefits of Different Residential Rate Designs

Energy solutions for a changing world

Peak Demand Benefits of an Inclining Block Rate Design

TOU Rate			Inclining Block Rate			
Customer Charge	\$	5.00	Customer	Charge	\$	5.00
Off-Peak	\$	0.08	First 500	kWh	\$	0.08
On-Peak	\$	0.15	Additional	kwh	\$	0.15

- TOU rate sets on-peak at \$.15
- IBR sets rates for ALL usage over 500 kWh at \$.15
- ~80% of usage in peak months is by customers using over 500 kWh/month
- Therefore this IBR will achieve about 80% of the peak load benefits of this TOU rate.

Jim's Preferred Residential Rate Design (Note: requires AMI)

Simple enough to understand, but with attention to critical peak hours.

Customer Charge	\$5.00	Billing and Collection ONLY
First 500 kWh	\$.08	Cost of Older Resources / High load factor uses
Over 500 kWh	\$.16	Cost of New Resources / Low load factor uses
Critical Peak Surcharge	\$.50	Max: 4 hours/day, 15 days/year

Commercial and Industrial Rates Covered in the Publication

Commercial

- TOU rates
- Rolling baseline rates
- AMI not a barrier for larger customers

Industrial

- AMI not a barrier
- TOU and Real-Time Pricing alternatives
- Rolling baseline rates

Other Topics Covered in the Publication

- Treatment of emission costs in rates
- Tariff vs. Market-Based Pricing for restructured regions
- New customer connection charges
- Pricing for small power producers
- Low-Income energy assistance rates
- Prepayment

Key Themes For Modern Rate Design

- Focus on long-run marginal costs, including transmission, distribution, and environmental costs.
- Recover costs in usage sensitive elements of the rate design.
- Consider some sort of dynamic price as an <u>optional</u> service.
- Empower consumers to respond effectively.
- Manage utility revenue stability concerns separately.

Bill Simplification

Energy solutions for a changing world

Which Pricing Approach is More Useful to You as a Consumer?

Crude Oil	\$2.237	The second states and the second
Tanker to Refinery	\$0.114	
Refinery Capital	\$0.213	
Refinery Operating	\$0.235	
Product Pipeline	\$0.113	
Terminal Rack	\$0.023	Self Cash or Credit
Truck to MiniMart	\$0.114	Regular 3.77%
Mini-Mart Profit	\$0.217	Special 3.97%
State Taxes	\$0.349	Super+4002
Federal Taxes	\$0.184	

So Why Do We Confuse Electric Consumers?

Your Usage:		1,2	66 kWh				
Base Rate	,		Rat	te	Usage	An	nount
First 500	kWh		\$	0.04000	500	\$	20.00
Next 500	kWh		\$	0.06000	500	\$	30.00
Over 1,00	0 kwh		\$	0.08000	266	\$	21.28
Fuel Adjus	stment Cha	arge	\$	0.03456	1,266	\$	43.75
Infrastruc	ture Track	er	\$	0.00789	1,266	\$	9.99
Decoupling Adjustment		\$	(0.00057)	1,266	\$	(0.72)	
Conservation Program Charge		\$	0.00123	1,266	\$	1.56	
Nuclear D	ecommiss	ioning	\$	0.00037	1,266	\$	0.47
Subtotal:						\$ [·]	126.33
State Tax				5%		\$	6.32
City Tax				6%		\$	7.96
Total Due						\$	140.60

When This is What It Really Means

EFFECTIVE RATE INCLUDING ALL ADJUSTMENTS							
First 500	kWh	\$	0.09291	500	\$ 46.46		
Next 500	kWh	\$	0.11517	500	\$ 57.59		
Over 1,00	0 kwh	\$	0.13743	266	\$ 36.56		
					\$140.60		

SIMPLIFY WHAT YOU PUT ON THE BILL!

Recommended Publications

This Presentation: *Rate Design Where Advanced Metering Infrastructure Has Not Been Fully Deployed* <u>http://www.raponline.org/document/download/id/6516</u>

Companion Publication: Time-Varying and Dynamic Rate Design http://www.raponline.org/document/download/id/5131

Pricing Do's and Don'ts: Designing Retail Rates as if Efficiency Counts http://www.raponline.org/document/download/id/939

Charging for Distribution Utility Services: Issues in Rate Design http://www.raponline.org/document/download/id/412

Customer Incentives for Energy Efficiency Through Electric and Natural Gas Rate Design http://www.epa.gov/cleanenergy/documents/suca/rate_design.pdf

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Jim Lazar, RAP Senior Advisor jlazar@raponline.org

US

China EU

Global The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, Vermont 05602 phone: 802-223-8199 fax: 802-223-8172 www.raponline.org