

TEN PITFALLS OF POTENTIAL STUDIES: AN OVERVIEW

Produced by Energy Futures Group For the Regulatory Assistance Project

December 5, 2012

Chris Kramer and Glenn Reed

Introduction and Context

- Potential studies fulfill important purposes, such as:
 - Evaluating potential of energy efficiency as an alternative to supplyside resources
 - Planning a portfolio of energy efficiency programs
- □ But they require significant investments, including:
 - Time
 - Money
 - Staffing
- Less costly to avoid mistakes up front
- Sometimes may need to reinterpret results

Introduction and Context (Cont.)

- Too often, study results imbued with false sense of precision
- Important to be as accurate as possible
- But also acknowledge uncertainties
- Engage stakeholders early
- Identify potential pitfalls up front
- Be transparent about approach to them

Value of The RAP Report

- Identifies 10 Key Potential Study Pitfalls
- Chosen by Project Team from list of about 40
- Describes them along six dimensions:
 - 1. Why is it an issue?
 - 2. Impact on savings and cost-effectiveness (direction)
 - 3. Impact on savings and cost-effectiveness (magnitude)
 - 4. How to determine whether it is an issue in a given potential study
 - 5. How to avoid the issue in the first place or correct it
 - 6. How to reinterpret potential study findings when issue is already embedded

Key Themes

- Identify potential pitfalls <u>early</u> in the process
- Spell out <u>in writing (RFP,</u> Scope of Work) methods used to address them
- Ensure <u>transparency</u> with respect to inputs, methods, and uncertainties

Ten Pitfalls

- 1. Defining "Achievable" Savings
- 2. Policy Considerations and Constraints
- 3. Modeling Program Participation
- 4. Excluding Measures and Savings Opportunities
- Incorporating Codes and Standards into Technology Baselines

Ten Pitfalls, Continued

- 7
- 6. Issues with Utility Sales Forecasts
- 7. Consistency with the Integrated Resources Plan
- 8. Cost-Effectiveness Screening with the Total Resource Cost and Societal Cost Tests
- 9. Inclusion of Non-Energy Impacts
- 10. Forecasting Net Savings

1. Defining "Achievable" Savings

Technical vs. Economic vs. Achievable

Not technically feasible	Technical Potential						
Not technically feasible	Not cost effective	Economic Potential					
Not technically feasible	Not cost effective	Market and adoption barriers	Achievable Potential				
Not technically feasible	Not cost effective	Market and adoption barriers	Program design, budget, staffing, and time constraints	Program Potential			

1. Defining Achievable Savings

- □ Achievable is *not* necessarily an upper limit
- □ Multiple "flavors" of achievable:
 - "Maximum Achievable"
 - "Program Achievable"
 - Specific budget limits
 - Incentive limits

1. Defining Achievable Savings (Cont.)

Interpreting "Achievable"

- Within one set of budget/incentive limits, "achievable" often carries false connotation of maximum possible under those constraints
- But non-monetary factors can influence what is possible (e.g., program design, implementation)
- Study results may be modeled based on past results in which these factors were not optimized

<u>Key Takeaways</u>: Decide and spell out meaning of "achievable." Beware of comparing different studies with different definitions. When reading a completed study, don't assume it's really a maximum, even under one set of constraints.

2. Policy Considerations

- Many up-front policy decisions will impact savings projections
 - Sector Equity
 - Low Income Programs
 - Screening Test and Methodology
 - Measure vs. Portfolio-Level Screening
 - Fuel Switching
 - Combined Heat and Power
 - Joint promotion of programs saving multiple fuel types

<u>Key Takeaway</u>: Many types of policies may impact savings projections. Identify them up front and look for policy differences when comparing study results from different jurisdictions.

3. Modeling Participation

- Two typical methods: technology adoption curves and direct estimates
- Technology adoption curves
 - Often take on a false air of precision
 - But only as good as their inputs and methods
 - These are often not adequately described
 - Frequently presented as a "black box"

3. Modeling Participation (Cont.)

- Technology adoption curves (cont.):
 - Tend to focus heavily on payback periods
 - May not account for other key factors (marketing, stocking practices, etc.)
 - Backward-looking, often based on contexts in which goal was not maximum achievable
 - Should be calibrated against experience, especially of aggressive programs
 - Maximum achievable from such programs has been higher than what curves typically predict

3. Modeling Participation (Cont.)

Direct estimates

- "Informed projections"
- May be subjective
- But impossible to eliminate subjectivity
- For either method, important to gather expert/stakeholder input up front
- Provide intermediate projections

<u>Key Takeaway</u>: Projecting participation is a forward-looking, subjective process.
 Adoption curves are just as subjective as direct estimates, but too often treated as more accurate, despite range of possible problems with them.

4. Excluding Savings Opportunities

- Emerging Technologies
- System-Wide Savings
 - E.g., improvements in an entire set of industrial processes
- Interactive Effects
 - E.g., lighting retrofit at time of commercial chiller replacement may reduce both lighting power density and necessary size of replacement chiller
- Retrofit/Early Replacement
 - Important to quantify shift in replacement cycle correctly (see report for methodology)

4. Excluding Savings Opportunities (Cont.)

- Behavior/Operational Improvements
- Market Segments
- Combined Heat and Power
- Fuel Switching
- Demand Response
- Screening under Average
 Conditions

Promoting Codes and Standards

<u>Key Takeaway</u>: Decide up front what types of savings opportunities will be assessed. Leaving out important opportunities may lead savings potential to be substantially understated.

Excluding Savings Opportunities (Cont.)

17

Indicator	(Column 1) - Replace on Burnout Base Case	(Column 2) - Early Replacement Scenario	(Column 3) Difference of Column 2 and Column 1 (Column 2 - Column 1)	(Column 4) - Percent Difference
Total Incontines Daid for 2006 to 2015				
(Present Value)	\$214,251,884	\$290,457,037	\$ 76,205,153	35.57%
Total Administrative Costs Paid from 2006 to 2015 (Present Value)	\$133,800,997	\$ 97,443,174	\$ (36,357,824)	-27.17%
Present Value of Total Utility Energy Efficiency Program Budget 2006 to 2015	\$348,052,882	\$387,900,211	\$ 39,847,329	11.4%
Average Annual Budget (2006-2015)	\$34,805,288	\$38,790,021	\$3,984,733	11%
Cumulative Annual mWh Savings by 2015	1,286,823	1,166,144	(120,679)	-9.4%
Cumulative Annual Winter Peak MW Savings by 2015	379	389	10	2.6%
Cumulative Annual Summer Peak MW Savings by 2015	225	244	19	8.5%
NPV Benefits (Vermont Societal Test)	\$ 1,358,463,742	\$ 1,675,495,161	\$ 317,031,419	23.3%
NPV Costs (Vermont Societal Test)	\$ 393,994,396	\$ 526,653,726	\$ 132,659,330	33.7%
NPV Savings	\$ 964,469,346	\$ 1,148,841,435	\$ 184,372,089	19.1%
B/C Ratio	3.45	3.18	(0.27)	-7.7%

5. Codes, Standards, & Baselines

- Codes and standards set the minimum requirements for buildings and measures
- Savings may represent the delta between these minimums and efficient alternatives
- □ Not always 100% enforced
- Sometimes measured using actual observed baseline

5. Codes, Standards, & Baselines (Cont.)

- All else equal, savings delta shrinks as baselines increase
- But efficiency of advanced technologies typically increases, too
- Incorporate known future changes in codes and standards
- Be transparent about how more uncertain changes are factored in

<u>Key Takeaway</u>: Account for future codes and standards and future increases in efficiency of advanced technologies to project savings potential.

6. Utility Sales Forecasts

- Typical Use of Forecasts by Sector
 - "Top Down" use for C&I
 - Calibration in Residential
- "Embedded Efficiency" from past DSM

- Failure to adjust the forecast upward may cause the forecast to be understated
- Future Codes and Standards
 - Failure to account for them may cause program-related savings potential to be overstated

<u>Key Takeaway</u>: Examine what factors may be left in or left out of utility sales forecasts and make appropriate adjustments for study purposes.

7. Consistency with the IRP

- Many inputs/assumptions overlap between potential studies and other resource planning
 Expected Resource Additions
 - Energy and peak demand forecasts
 - Future codes and standards
 - Fuel prices/avoided costs
 - Inflation rates
 - Discount rates
 - Consider conducting potential study as integral part of IRP process.
 - Otherwise, make adjustments where practical or explicitly highlight discrepancies and relevant impacts.

Source: PNM Electric IRP

 \mathcal{P}

<u>Key Takeaway</u>: As much as possible, IRP and potential study inputs should be consistent to ensure EE is considered on an equal footing.

8. TRC and Societal Tests

- Measures and/or programs screened based on costs vs. benefits
- More measures and programs = higher savings potential
- But which benefits are included?
- Societal vs. Utility Discount Rate
- Methodological issues in calculating all of these avoided costs

Avoided Costs & Other Benefits	TRC	SCT
Avoided energy of subject fuel	\checkmark	\checkmark
Avoided capacity of subject fuel	✓	\checkmark
Avoided line losses *(marginal vs. avg.)	Ś	Ś
Avoided transmission and distribution	Ś	Ś
Demand-reduction-induced price effects (DRIPE)	Ś	Ś
Avoided costs of other fuels	Ś	Ś
Avoided water costs	Ś	Ś
Avoided environmental compliance costs	Ś	Ś
Non-energy benefits	Ś	Ś
Other environmental externalities		Ś

<u>Key Takeaway</u>: Benefits included vary widely, with important implications for total savings potential. Decide up-front which to include, state them clearly, and be wary of cross-study comparisons using different types of screens.

TRC and Societal Tests (Cont.)

Conservative Case

	Avoided	Avoided	Avoided	Avoided	Avoided	Env.	Total	Cost	Net Bens	BCR
	kWh	kW	Therms	H2O gal	T&D	Adder	Bens			
Clothes	\$69.22	\$5.13	\$0.00	\$0.00	\$0.00	\$0.00	\$74.35	\$250	(\$175.65)	0.30
Washer										
Central	\$93.16	\$75.84	\$0.00	\$0.00	\$0.00	\$0.00	\$169.00	\$550	(\$381.00)	0.31
A/C										
CFL	\$15.88	\$1.28	\$0.00	\$0.00	\$0.00	\$0.00	\$17.16	\$3	\$14.16	5.72

Comprehensive Case

	Avoided	Avoided	Avoided	Avoided	Avoided	Env.	Total	Cost	Net Bens	BCR
	kWh	kW	Therms	H2O gal	T&D	Adder	Bens			
Clothes Washer	\$98.93	\$7.34	\$34.63	\$496.35	\$13.79	\$9.89	\$660.93	\$250	\$410.93	2.64
Central A/C	\$143.65	\$116.94	\$0.00	\$0.00	\$219.76	\$14.37	\$494.72	\$550	(\$55.28)	0.90
CFL	\$19.96	\$1.61	\$0.00	\$0.00	\$3.02	\$2.00	\$26.58	\$3	\$23.58	8.86

9. Non-Energy Impacts

Many types:

Customer	Utility	Society
 Reduced operations & maintenance Increased comfort Aesthetics Convenience (+/-) Air quality Health 	 Reduced collection costs Fewer shut-offs Fewer write-offs Fewer customer complaints 	 Increased energy independence Community aesthetics Reduced health costs

- Many are difficult to quantify, but evidence suggests they are substantial. Quantified in MA. Other states (e.g., VT) use adders.
- Improvements often sold more on basis of NEBs than on energy savings, yet rarely counted in screening.

<u>Key takeaway</u>: As with other costs and benefits, leaving out NEIs will affect screening and therefore total savings potential.

10. Forecasting Net Savings

- "Net savings" = Gross Savings Free Ridership + Spillover
- Important when potential study is intended to inform energy efficiency program planning
 - Key question: what level of savings potential is attributable to programs
- May be less critical in resource planning
 - Key question: what level of total demand can be met through efficiency (program-driven or naturally occurring)?
- Or where gross savings goals are pre-established

10. Forecasting Net Savings

- Net-to-gross ratio (1 Free Ridership + Spillover) can be estimated for purposes of potential study in several ways
 - Applying past experience
 - Market share analysis
 - Sales data analysis

- Not an exact science
- But important to apply best estimate, if looking at potential impact of programs

<u>Key takeaway</u>: Apply NTG ratio when purpose is program planning. Be transparent about uncertainty, and consider offering range or error margin.

Cross-Cutting Themes

Transparency Is Key

- Too often, inputs and methods not fully explained in study narrative
- This makes it very difficult to interpret how projections were reached
- Denies the reader the ability to reinterpret results based on alternative assumptions or scenarios
- No shame in acknowledging that projections may or may not bear out
- Better to give enough information to allow readers to draw their own conclusions

Don't Fall Prey to False Sense of Precision

- Overall Savings Projections
- Technology Adoption Curves
- Econometric Modeling in Net Savings Analysis
- Sales Forecasting
- Avoided Cost Projections
- □ All of these modeling exercises can seem impressive
- But they are only as good as the inputs and equations they are based on
- Better to acknowledge uncertainties
 - Explain methods
 - Provide scenario analyses, range of outcomes, or error bars
 - Provide intermediate projections where relevant

Identify Pitfalls Early

- Much harder to go back and re-do analysis once work is too far along or complete
- May be no budget left for the project
- Engage range of stakeholders early to agree on the study scope, identify pitfalls, and agree on approaches/methodologies
- Lay out approaches in writing as early as possible
 Can describe them in the RFP
 - At a minimum, should be discussed in scope of work

Identify Issues with Outside Sources

- Utility Sales Forecasts
- Integrated Resource Plans
- Avoided Cost Assumptions
- Other Potential Studies (Inputs/Calibration)
- Examine whether any issues may be embedded in these sources
- Where possible, make appropriate adjustments
- If not possible, be clear about possible impacts on potential study results

Be Wary of Comparing Study Results

- Different definitions of "achievable"
- Different inputs and assumptions
- Different contexts
- Past results may not reflect future conditions
- Study results from other jurisdictions can provide helpful data points
- But be sure to apply them with the proper caveats

Contact Info

Chris Kramer and Glenn Reed Energy Futures Group (802) 482-5001 ckramer@energyfuturesgroup.com greed@energyfuturesgroup.com http://www.energyfuturesgroup.com