
# Value of Solar and Grid Benefits Studies

Alternative Approaches and Results

Presented by Jim Lazar, RAP Senior Advisor and Dr. Thomas Vitolo, Synapse Energy Economics Senior Associate

# Questions?

Please send questions through the Questions pane



# Our Experts



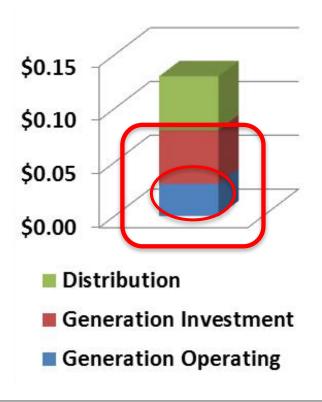
Jim Lazar

- RAP Senior Advisor (since 1998)
- Author of Electricity
   Regulation in the US:
   A Guide, and 11 other
   handbooks.



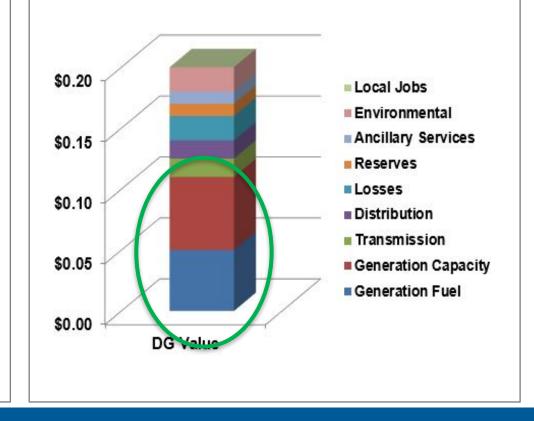
**Dr. Thomas Vitolo** 

- Synapse Energy Economics Senior Associate
- PhD, System Engineering
- Expertise in VoS, PURPA, intermittent integration, munis


# Overview of Net Metering and Value of Solar Ratemaking

- Net-Metering:
  - Simple
  - No new metering required
  - Typically not TOU based
  - Considered an infant-industry subsidy by many
- Value of Solar Analysis
  - Can be narrow (short-run) or broad in scope

# Two Views of Cost Recovery


### Traditional Utility View

 DG customer "uses" the grid and should pay for it;



### Solar Advocate View

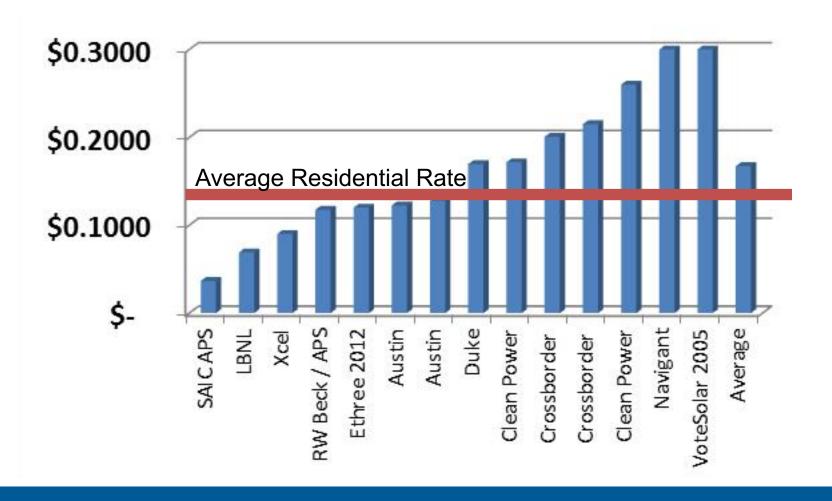
 Value of distributed resource is greater than the than retail rate;



# Range of Solar Valuation Studies

- Narrow studies
  - Short-run cost savings from solar additions
- Long-Run studies
  - Generation capacity and energy value
- Broad Utility Sector Studies
  - Generation, transmission, distribution, and other utility system values.
- Extensive Societal Studies
  - Utility system and societal benefits

# Categories of Costs Considered


| Type*                | Variable | Capital | Externalities | Societal |
|----------------------|----------|---------|---------------|----------|
| Narrow               | X        |         |               |          |
| Long-Run             | X        | X       |               |          |
| <b>Broad Utility</b> | X        | X       | <b>x</b> *    |          |
| Extensive            | X        | X       | X             | X        |

<sup>\*</sup> Most utility studies consider only a subset of externalities, those that affect the utility sector.

# Some Costs Treated Very Differently

- Production Capital Costs
- Transmission Capital Costs
- Distribution Capacity Credit
- Marginal or Average Line Losses
- Current or Future Environmental Costs
- Fuel Cost and Fuel Supply Risk
- Macroeconomic Effects

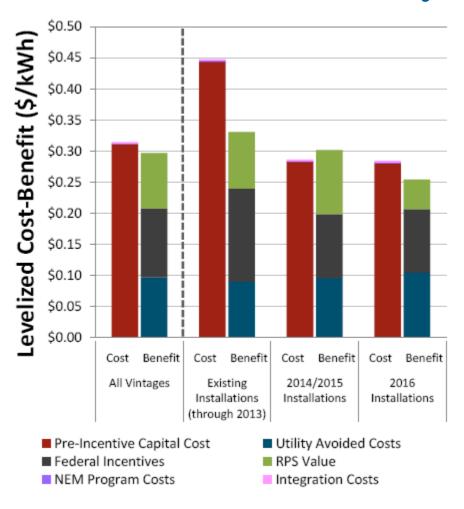
# RMI Survey Of Multiple Studies: Range: \$0.04 - \$0.30/kWh



### **Narrow Studies**

- Consider short-run marginal cost avoidance only
  - Fuel and purchased power
  - Line losses
  - Out of pocket environmental compliance

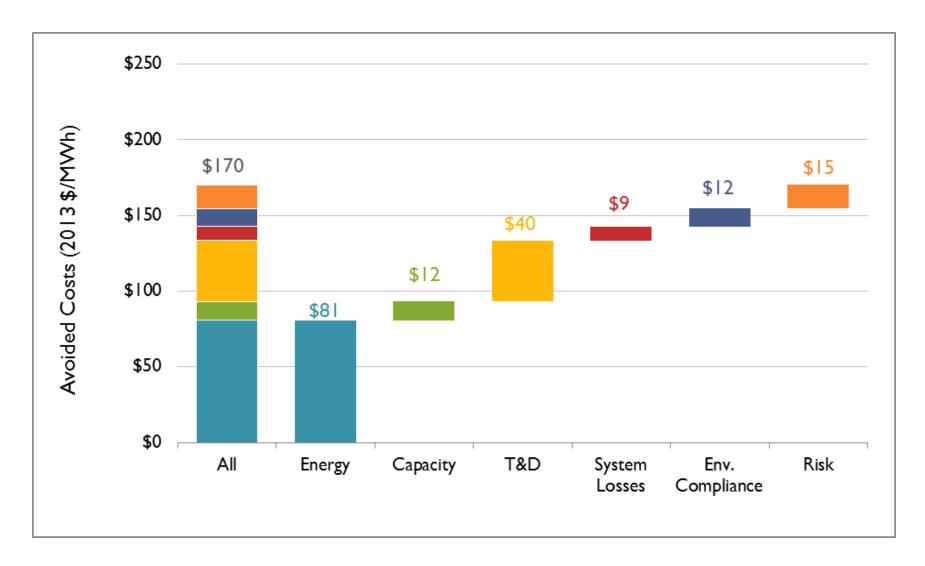
Some look only at power supply


# Example Narrow Study NV Energy 2015

- Utility has adequate capacity
- Fuel savings are primary short-run benefit
- Commission ordered 8-year phase-down of NEM pricing
- Modified rate design for existing solar:
  - Higher fixed charge
  - Lower variable charge
- Update: Existing customers to be grandfathered

# **Broad Utility Sector Studies**

- Nevada (E3)
- Mississippi (Synapse)
- Maine (Clean Power Research)
- Austin (Austin Energy)
- Minnesota (State Energy Office)


# Long Run Studies: E3 for Nevada Costs and Benefits Very Close



### **Net Metering in Mississippi**

- Synapse Energy Economics prepared the analysis for the Mississippi Public Service Commission, Docket No. 2011-AD-2
- Released September 19, 2014
- <a href="http://www.synapse-energy.com/project/mississippi-net-metering-study">http://www.synapse-energy.com/project/mississippi-net-metering-study</a>

### Mississippi: 25-Year Levelized Avoided Costs



### Mississippi VoS: 2014 and 2016

### **Energy**

- 2014: Avoided costs dominated by oil CTs in early years
- 2016: Fuel forecasts likely lower than 2014, two fewer years of oil-fired CTs

# **Generation Capacity**

- 2014: Linear increase from \$6 kW-yr to net CONE over 25 years
- 2016: MISO South Zones 8-10 cleared at \$1.09 kW-yr

### Mississippi VoS: 2014 and 2016

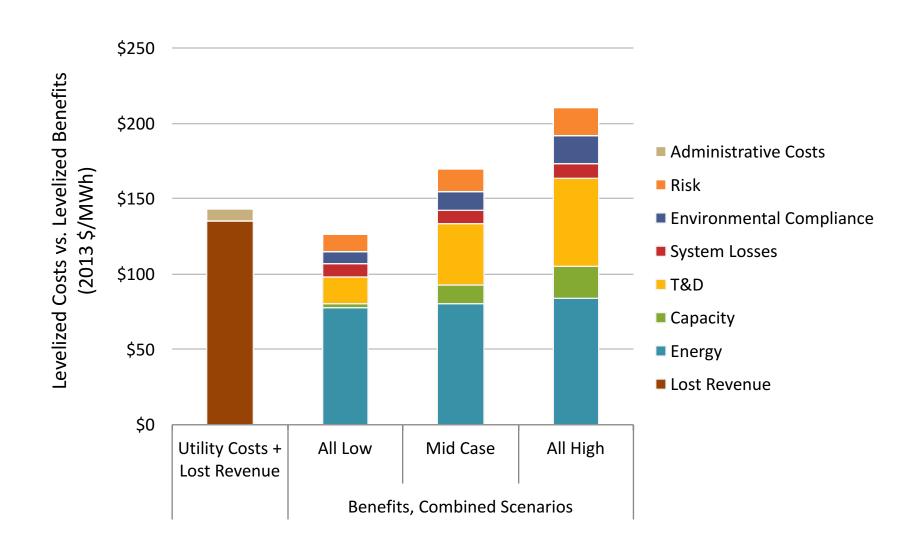
# Transmission & Distribution Capacity

- 2014: In-house estimation of \$33 kW-yr transmission + \$55 kW-yr distribution, adjusted for capacity credit
- 2016: Still no MS utility-specific studies to my knowledge

### **System Losses**

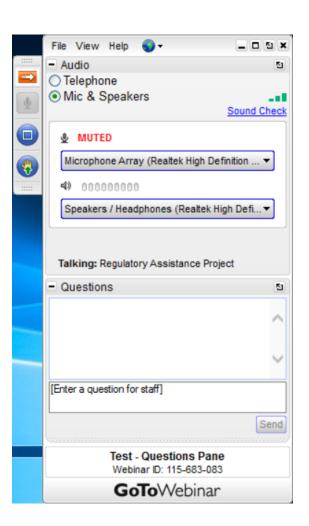
- 2014: weighted average system losses using Entergyand MS Power-specific data and national average for rest-of-state
- 2016: Using 2014 marginal line losses bumps benefit from \$9 MWh to \$16/MWh. Still no MS utilityspecific PV-temporal utility-specific studies to my knowledge

### Mississippi VoS: 2014 and 2016


# **Environmental Compliance**

- 2014: CO<sub>2</sub> price only Synapse Mid case (\$15/ton in 2020, increasing linearly to \$60/ton in 2040). SOx and NOx allowances embedded in avoided energy benefits.
- Dec 2014: MS PSC, citing Energy Ventures Analysis, stated residential bills to go up 35%, industrial rates 69% due to CPP.¹ Other predictions nowhere near as dire.

#### **Avoided Risk**

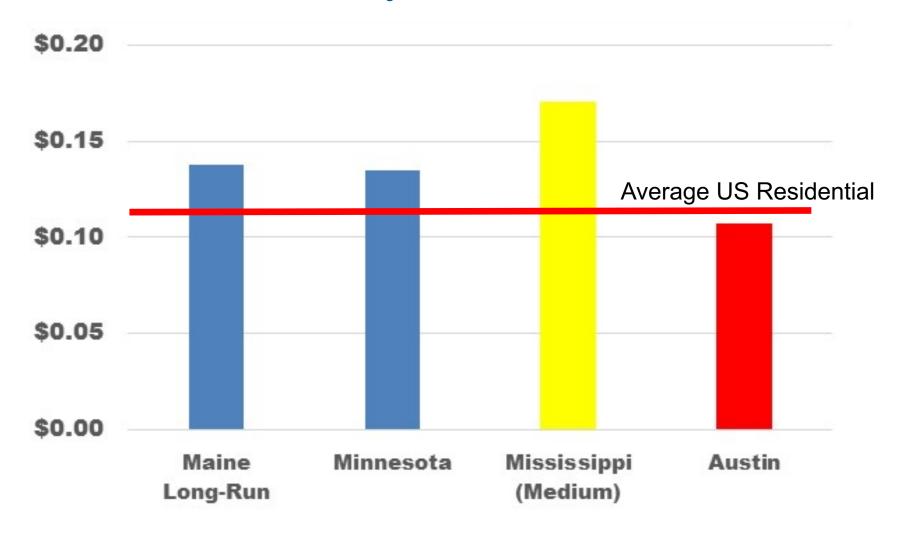

- 2014: 10% adder to all five other benefit categories
- 2016: A more finely tuned analysis perhaps more appropriate

### Mississippi VoS: NEM Impact on Rates



# Questions?

Please send questions through the Questions pane




# Broad: E3 Nevada vs Synapse Mississippi

- Included in E3
  - Generation
  - Transmission
  - Distribution
  - Losses
  - Avoided RPS

- Not Included in E3
  - Solar admin costs
  - Market Price Effects
  - Price Risk
  - Grid Support Services
  - Outage costs
  - Non-energy benefits

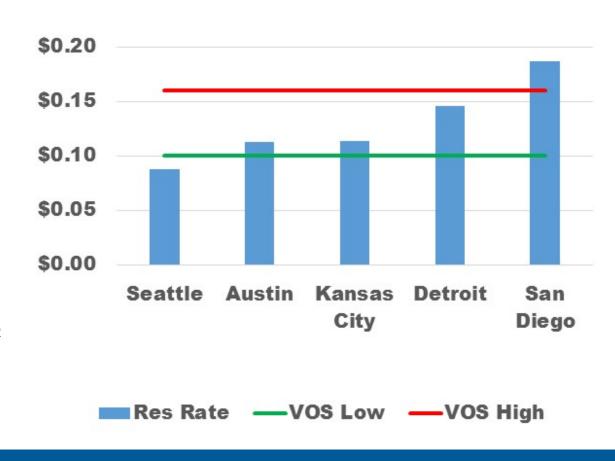
# **Broad Utility Sector Studies**



# **Expansive Societal Studies**

- Consider values in addition to those in the utility revenue requirement
  - Environmental benefit including future carbon costs
  - Local economic development
  - Value of energy independence
- Often show significant value generated for public even with full net-metering.

# Crossborder Energy / Colorado


| Benefits to PSCo Ratepayers                                                 | Fully Valued | Undervalued | Not<br>Included |
|-----------------------------------------------------------------------------|--------------|-------------|-----------------|
| Energy                                                                      |              |             |                 |
| Avoided energy (including fuel) Avoided T&D line losses                     |              |             |                 |
| Capacity                                                                    |              |             |                 |
| Avoided generation capacity                                                 |              | C           |                 |
| Avoided T&D capacity and fixed O&M                                          |              | 3           |                 |
| Grid support services                                                       |              |             |                 |
| Financial                                                                   |              |             |                 |
| Fuel Hedging                                                                | 3            |             |                 |
| Avoided RPS or renewables costs                                             |              |             |                 |
| Grid security and resiliency                                                |              |             |                 |
| Environmental                                                               |              |             |                 |
| Air pollutants (NO <sub>x</sub> , SO <sub>x</sub> , PM, & CO <sub>2</sub> ) |              | G           |                 |
| Reduced water usage in power production                                     |              |             |                 |
| Avoided land costs for generation or T&D                                    |              |             |                 |
| Societal benefits (not direct ratepayer benefits)                           |              |             |                 |
| Job creation benefits                                                       |              |             |                 |
| Economic development, including local taxes                                 |              |             |                 |
| Avoided health impacts                                                      |              |             |                 |

# Expansive Study: Colorado

| Benefit/(Cost)                     | Low Gas | Base Gas | High Gas |
|------------------------------------|---------|----------|----------|
|                                    | \$/MWh  | \$/MWh   | \$/MWh   |
| <b>Avoided Energy Costs</b>        | 35.80   | 52.10    | 76.10    |
| Fuel Hedge Value                   | 6.60    | 6.60     | 6.60     |
| <b>Avoided Emissions</b>           | 27.40   | 27.40    | 27.40    |
| <b>Avoided Generation Capacity</b> | 50.60   | 50.60    | 50.60    |
| <b>Avoided Distribution</b>        | 6.00    | 6.00     | 6.00     |
| <b>Avoided Transmission</b>        | 18.00   | 18.00    | 18.00    |
| <b>Avoided Line Losses</b>         | 4.70    | 6.20     | 8.30     |
| (Solar Integration Costs)          | (0.50)  | (1.80)   | (4.40)   |
| +10% for Societal Benefits         | 14.90   | 16.50    | 18.90    |
| <b>Total Net Benefits/(Costs)</b>  | 163.50  | 181.60   | 207.50   |

# An Important Difference: High-Cost vs. Low-Cost Utilities

- Many utilities
   have low rates
   due to
   embedded low cost resources.
- The marginal costs may be similar to those for higher cost utilities.



# Things are a Little Different in Hawaii



### Hawaii: Changing Value As Solar Installations Become More Prevalent

- Net metering until 2015 @
  ~\$.30/kWh
- Shifted to a marginal fuel credit @ ~\$.15/kWh for limited **new** "grid supply" installations.
- By 3<sup>rd</sup> Quarter 2016, no new gridsupply systems permitted – only "self-supply" w/o backfeed.



# Half of System Peak in Maui

Table 3. HECO Companies' Net Energy Metering Program Capacity and Enrollment

| Capacity (MW)          | HECO   | HELCO  | MECO   |
|------------------------|--------|--------|--------|
| Installed or Approved  | 327.9  | 73.3   | 88.8   |
| In the Queue           | 17.3   | 5.1    | 11.9   |
| Total                  | 345.2  | 78.4   | 100.7  |
|                        |        |        |        |
| Total NEM Customers    | 51,680 | 11,549 | 12,893 |
| System Peak Load (MW)  | 1,165  | 188    | 191    |
|                        |        |        |        |
| NEM % of All Customers | 17%    | 14%    | 18%    |
| NEM % of System Peak   | 30%    | 42%    | 53%    |
|                        |        |        |        |

# Peak Load Impacts May Be Limited

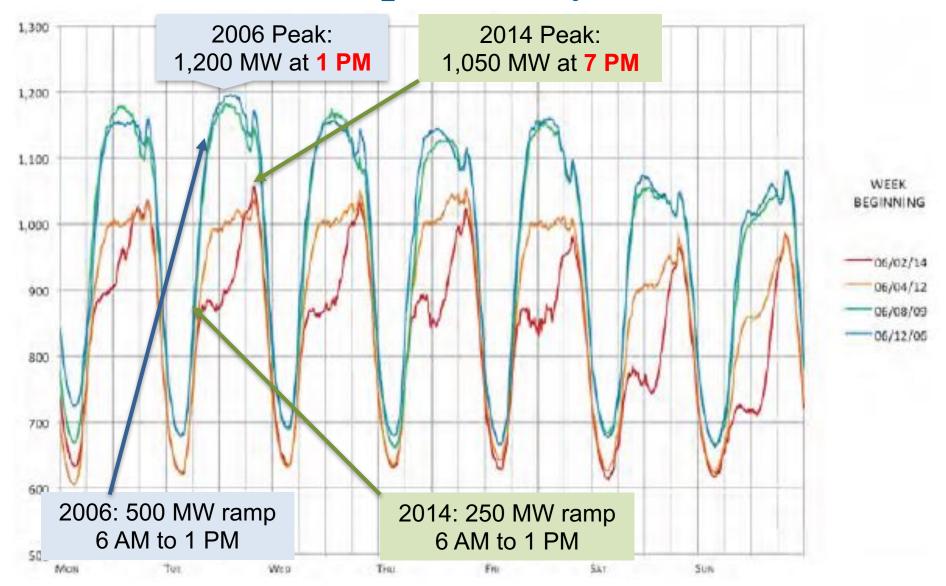
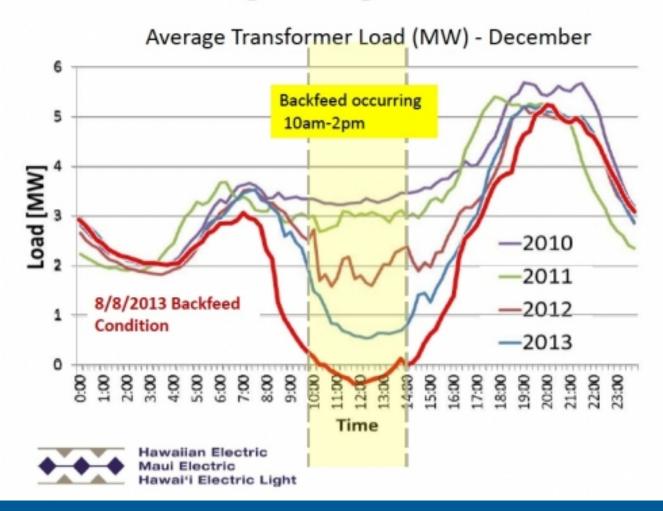




Figure 1-7. O'ahu System Load Profiles, 2006-2014

Source: Hawaiian Electric Co

### Circuits and Substations "Running Backwards"

### Tracking Change – 46kV Level



# Discussion / Q&A



### **Key Takeaways**

- The answer you get depends on the question you ask.
  - Short-run or long-run?
  - Utility direct effects only?
  - Utility direct and future utility effects?
  - All societal effects?
  - High PV saturation utilities are different
  - Low-cost utilities: >NEM may be needed
- Valuation of T&D, risk avoidance and environmental costs are important.

Additional Resources at Value of Solar Center for Excellence

http://voscoe.pace.edu

#### **About RAP**

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power sector. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Jim Lazar, Senior Advisor jlazar@raponline.org



#### The Regulatory Assistance Project (RAP)®

Beijing, China • Berlin, Germany • Brussels, Belgium • Montpelier, Vermont USA • New Delhi, India

### **Synapse Energy Economics**

- Founded in 1996 by CEO Bruce Biewald
- Leader for public interest and government clients in providing rigorous analysis of the electric power sector
- Staff of 30 includes experts in energy and environmental economics and environmental compliance