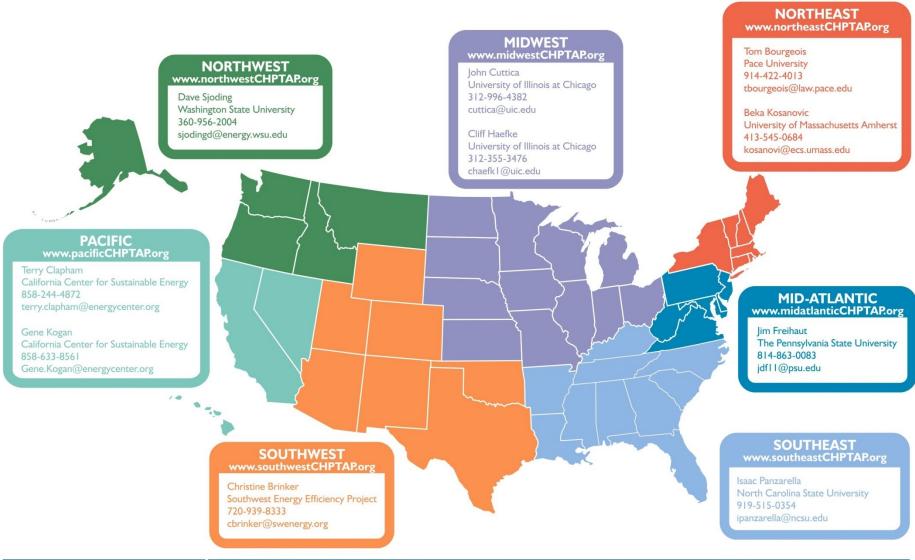
Taking a Deeper Look at Standby Rates for Combined Heat and Power

June 27, 2014 Webinar presented by:


Christine Brinker, Director, U.S. DOE Southwest CHP
Technical Assistance Partnership
Dr. Carl Linvill, Principal, RAP
Richard Sedano, Principal & Director U.S. Programs, RAP

DOE CHP Technical Assistance Partnerships (CHP TAPs)

DOE CHP Technical Assistance Partnerships (TAPs): Program Contacts Claudia Tighe
CHP Deployment Lead
Office of Energy Efficiency and
Renewable Energy
U.S. Department of Energy
Phone: 202-287-1899
E-mail: claudia.tighe@ee.doe.gov

Jamey Evans
Project Officer, Golden Field Office
Office of Energy Efficiency and
Renewable Energy
U.S. Department of Energy
Phone: 720-356-1536
E-mail: jamey.evans@go.doe.gov

Patti Welesko Garland CHP Technical Support Coordinator Oak Ridge National Laboratory Supporting, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Phone: 202-586-3753 E-mail: garlandpw@ornl.gov

Ted Bronson DOE CHP TAPs Coordinator Power Equipment Associates Supporting, Office of Energy Efficiency and Renewable Energy Phone: 630-248-8778

E-mail: tlbronsonpea@aol.com

Technical Assistance

Education/Outreach

Market Opportunity Analyses

... to help reach the nation's 40 GW goal

What is the SEE Action Network?

- Network of 200+ leaders and professionals, led by state and local policymakers, bringing energy efficiency to scale
- Support on energy efficiency policy and program decision making for:
 - Utility regulators, utilities and consumer advocates
 - Legislators, governors, mayors, county officials
 - Air and energy office directors, and others
- Facilitated by DOE and EPA; successor to the National Action Plan for Energy Efficiency

To stay updated on SEE Action activities and resources, sign-up for email alerts:

www1.eere.energy.gov/seeaction/index.html

DO E/EE-0838

Guide to the Successful Implementation of State Combined Heat and Power Policies

Industrial Energy Efficiency and Combined Heat and Power Working Group

Driving Ratepayer-Funded Efficiency through Regulatory Policies Working Group

March 2013

explores successful implementation approaches and policy recommendations

The State and Local Energy Efficiency Action
Network is a state and local effort facilitated by the
federal government that helps states, utilities, and
other local stakeholders take energy efficiency to
scale and achieve all cost-effective energy
efficiency by 2020.

Learn more at www.seeaction.energy.gov

Introducing Rich and Carl

Today's Agenda

- CHP as a Customer Resource: Fair Compensation in a Time of Transition
- Principles of CHP Standby Rates
- A Deeper Dive

Colorado

Ohio

Questions

The Transition Toward "N-way" Transactions

- Technology is making customer resources less expensive
- Technology is enabling customer resource participation
- Power sector institutions are evolving
- What constitutes fair compensation for CHP resources in a time of transition and beyond?

"Designing DG Tariffs Well": Implications for CHP

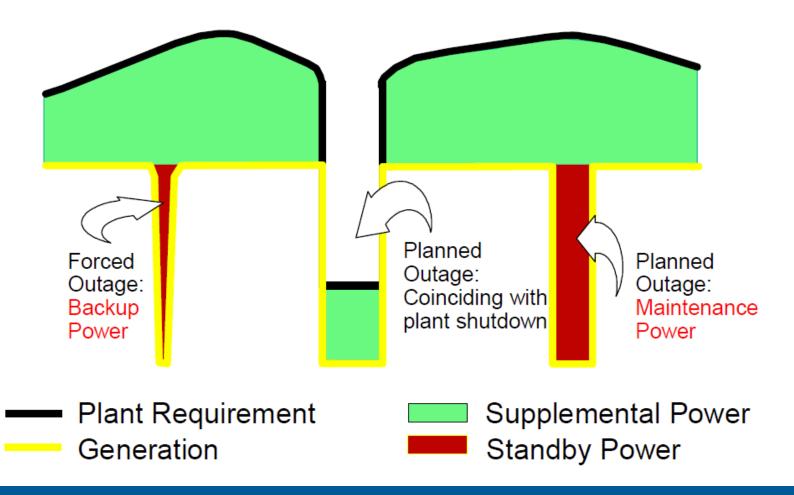
Issues for all Customer Resources

Recognize value is a two (or N) way street
The Full Value of CHP: include all
relevant sources of benefit and cost over
the long term

No more complicated than necessary

 http://www.raponline.org/document/dow nload/id/6898

"Standby Rates for Combined Heat and Power Systems"


- Prepared by Brubaker & Associates for RAP (Selecky, Iverson, Al-Jabir)
- Sponsored by ORNL & U.S. DOE
- Best Practice Recommendations and 5
 Case Studies
- http://www.raponline.org/document/download/id/7020

Standby Service Defined

- Set of electric utility products for customers with on-site, non-emergency generation
- Provides for a utility backstop
- Standby Service terms are important

Determine economics of CHP applications vs. utility full requirements service or purchasing power competitively

A Self-Generator's Purchase Requirements

Typical Standby Rate Components

- Capacity reservation charge
- As-used capacity and energy charges
- Maintenance capacity charge
- Facility charges

Standby Rates Best Practices: Allocation of Utility Costs

- Generation, transmission, and distribution charges should be unbundled
- Generation reservation demand charges should be based on the utility's cost and the forced outage rate of customers' generators on the utility's system
- Higher-voltage delivery charges should recognize load diversity

Standby Rates: Best Practices

Appropriate Incentives

Pro-rated daily demand charges

Daily maintenance demand charges -discounted

Customer Options

Interruptible standby service option
Customers should be able to procure
standby service from the open market

A Few Points about the Examples

- The examples were chosen primarily based on willing in-state interest
- The examples were not chosen based on being current best practices
- The examples were not chosen based on being the tariffs most in need of help
- Observations not intended to condemn, just trying to promote the public interest

Deeper Dive: PSCO in Colorado

PSCO Standby Tariffs for CHP > 10 kW

Transmission Standby Service (TST)
Primary Standby Service (PST)

Charges

Monthly Service and Facilities charge

Interconnection charge (TST only)

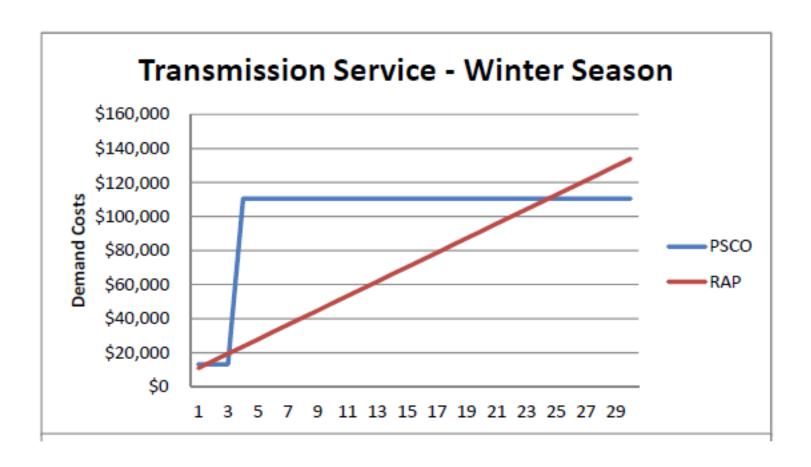
G&T Standby Capacity Fee

Distribution Standby Capacity Fee (PST only)

Demand and Energy charges

G&T Standby Capacity Design

- Covers 1,051 hours of standby service assuming 100% capacity factor
- Above the "Grace Energy" pay for Demand at the Supplemental capacity price and pay for Energy at the energy usage charge


Opportunities for Improving Price Signals Relative to Current Terms

- Currently there is no daily demand charge
- No TOU price signals
- No recognition of load diversity
- G & T costs bundled in reservation fee
- Self-dispatch and market purchases to meet stand-by requirements not allowed

Potential Improvements

- Monthly standby at best FOR unit
- Daily standby demand charges
- Add option to buy back-up power from utility at market prices
- Allow load reduction plans to mitigate back-up charges
- Unbundle G&T in reservation fee
- Reflect load diversity on shared distribution facilities
- Standby back-up demand charges on peak only

Improvement Effects Example

Deeper Dive: AEP in Ohio

- AEP Ohio Power Tariffs for CHP < 50 MW Standby Service provided by AEP (SBS)
 Standby provided by 3rd Party (OAD-SBS)
- Two Zones

Same Tariff structure, different rates for two different zones within AEP Ohio Power service territory

Schedule SBS

Terms of Service

A demand charge based on a forecasted FOR of 5, 10, 15, 20, 25 or 30%

Amount of back-up power available a function of the FOR selected

Excess beyond back-up purchased at supplemental rates AND a much higher capacity charge

Distribution charge based on voltage level Incremental Transmission recovered in a rider

Schedule OAD-SBS

Terms of Service

Monthly distribution charge based on voltage

Transmission charges based on the OATT

Opportunities for Improvement

- Complex
- FOR selection is risky
- Few price signals available to optimize use of customer and system resources (e.g., no daily demand charge)
- TOU components missing
- No recognition of load diversity
- Little flexibility

Recommendations

- Set monthly demand charge at the system best FOR
- Set daily demand charge
- Add option to buy back-up power from the market through the utility
- Add option to provide load reduction plan
- Reflect load diversity

Recommendations

- Demand charges should apply only on peak hours
- Avoid demand ratchets
- Simplify the tariff terms
- Vary fuel and purchased power prices by time of use
- Specify circumstances where special contracts required

Sample Result

Medium Load Economic Analysis

Self Gen. <u>kW</u> 4,000	Forced Outage 10%	Backup <u>kWh</u> 292,000	Backup <u>Days</u> 4	Maint. <u>kWh</u> 292,000	Maint. Hours 73	Maint. <u>Days</u> 4	
	Schedule SBS			Modifi	Modified Schedule SBS		
Standby Generation Transmission Distribution Total	\$/kW \$1.741 \$0.250 \$3.183	<u>\$/kWh</u>	\$6,964 \$1,000 \$12,732 \$20,696	\$/kW \$0.483 \$0.000 \$2.546	<u>\$/kWh</u>	\$1,932 \$0 \$10,184 \$12,116	
Backup Generation Transmission Distribution Total		\$0.00356	\$1,040 \$1,040	\$/kW/Day \$0.30600 \$0.06680 \$0.02122	\$0.00373	\$4,896 \$2,158 <u>\$340</u> \$7,393	
Maintenance Generation Transmission Distribution Total		\$0.00280 \$0.00417 \$0.00513	\$818 \$1,216 <u>\$1,498</u> \$3,532	\$0.1530 \$0.0334 \$0.0106	\$0.00186	\$2,448 \$1,079 <u>\$170</u> \$3,697	
TOTAL			\$25,268			\$23,206	

Conclusions on CHP Compensation

- Recognize the Full Value of CHP
- Align valuation of all customer resources with the public interest
- Traditional mechanisms can be done well
- Administrative Simplicity is important

Conclusions on Standby Rates

- Generation, reservation and daily demand charges
- Seasonal and on/off-peak charges
- Scheduled maintenance daily demand charge
- Dedicated distribution investment charge
- Load diversity for transmission and shared distribution
- Interruptible option
- Open market standby if available

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment.
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Carl Linvill, Richard Sedano clinvill@raponline.org, rsedano@raponline.org

The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • Montpelier, VT 05602 • phone: +1802-223-8199 • fax: +1802-223-8172