

8 November 2018

Beneficial Electrification of Space Heating

RAP Webinar

David Farnsworth Senior Associate Jim Lazar Senior Advisor Jessica Shipley Associate

1 Introduction

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, nongovernmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

www.raponline.org

Our Experts

David Farnsworth

Jim Lazar

Jessica Shipley

Questions?

Please send questions through the Questions pane

	1
▼ Audio 🖸	(
Sound Check	
 Computer audio 	2
Phone call	
🖉 MUTED	
Headset Microphone (Logitech \lor	•
(1)	
Headset Earphone (Logitech Ste \checkmark	
▼ Questions 1	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
[Enter a question for staff]	
[Enter a question for staff]	
[Enter a question for staff] Send Retooling Regulation	
[Enter a question for staff] Send Retooling Regulation Webinar ID: 294-296-827	

Today's Presentation

- 1. Analyzing Fuel Choice
- 2. Technology Considerations
- 3. Beneficial Electrification of Space Heating: Three Conditions
- 4. Strategies for Beneficial Electrification of Space Heating
- 5. Concluding Thoughts

Beneficial Electrification (BE) - Three Conditions

DIRECT USE OF NATURAL GAS FOR RESIDENTIAL SPACE AND WATER HEAT

COMPARED TO GAS-FIRED ELECTRIC GENERATION FOR HYDRO-FIRMING

THERMODYNAMIC, ECONOMIC, AND ENVIRONMENTAL IMPACTS

PREPARED FOR

ASSOCIATION OF NORTHWEST GAS UTILITIES

Portland, Oregon

Jim Lazar Consulting Economist Olympia, Washington

Fuel Choice – 1989

- Wind and solar were not viable economic resources
- Best heat pumps had a coefficient of performance of about 2
- Heat pump water heaters were not commonly available
- Best natural gas generating plants had about 42% conversion efficiency

Fuel Choice Today

- Wind and solar 2 3 ¢/kWh
- Heat Pump COPs are better
- New gas generation is as much as 62% efficient,
- Modern technology enables load control

Innovative & Efficient End Uses – Electrification Is Underway

What's The Opportunity?

Source: Steinberg, D., Bielen, D., Eichman, J., Eurek, K., Logan, J., Mai, L., et al. (2017). Electrification & Decarbonization: Exploring U.S. Energy Use and Greenhouse Gas Emissions in Scenarios with Widespread Electrification and Power Sector Decarbonization, using data from Energy Information Administration 2009 Residential Energy Consumption Survey.

What's The Opportunity?

2 Technology Considerations

Electric Space Heating Technologies We Looked At

- Air-source heat pumps
 - Ducted or ductless
 - Standard and cold-climate
- Air-source heat pumps with back-up or storage heating ("dual fuel")
- Ground-source heat pumps
- Electric resistance heating with storage

Electric resistance heater photo: Steffes Corp.

Example Supplemental Heating Sources For Cold Climates and Power Outages

35,000 BTU Vented Propane Room Heater 30,000 BTU Propane Fireplace Insert Steffes Electric Thermal Storage Room Heater

Optimal Heating Technology Varies by Climate Condition

Optimal Heating Technology Varies by Housing Type

Summary of Technology Considerations

		Single	Family Hor	nes								
	Coldest outdoor temperature	New well- insulated	Existing with Oil or Propane heating	Existing with Natural gas heating								
	30 degrees F		\checkmark	✓?								
	5 degrees F	\checkmark	√√ ?	✓?								
	Less than 5 degrees F	~~	✓?	✓?								
	Any temperature	\checkmark										
Air source heat pump 💙	Cold climate Air source heat pump	A S K	ASHP w supplemental neat	Electric resistanc storage	ce 🔨		G ro hea	Grour heat p	Ground heat pu	Ground so heat pum	Ground sou heat pump	Ground sour heat pump

Regulatory Assistance Project (RAP)®

Summary of Technology Considerations

	Apartm	nents	Single Fa	amily Homes		Manu	factured
Coldest outdoor temperature	New	Existing	New well- insulated	Existing with Oil or Propane heating	Existing with Natural gas heating	New	Existing
30 degrees F	~	\checkmark	\checkmark	\checkmark	✓?	\checkmark	\checkmark
5 degrees F	\checkmark	✓?	\checkmark	~?	✓?	✓?	✓?
Less than 5 degrees F	\sim	X ?	~~	✓?	✓?		
Any temperature	\checkmark		\checkmark			\checkmark	
Air source heat pump	Col air hea	ld climate source at pump	A su h	SHP with upplemental eat	Electric resistant storage	ce 🗸	Ground s heat pum

3 BE for Space Heating – Three Conditions

Questions?

Please send questions through the Questions pane

		1
▼ Audio	ប	(
Sound Check	- ?	
Computer audio		@
Phone call		
🖉 MUTED		
Headset Microphone (Logitech	\sim	•
4 0)		
Headset Earphone (Logitech Ste	. ~	
	۶٦	
 Questions 		
Thank you for joining us; the webinar will b shortly.	egin	
Thank you for joining us; the webinar will b shortly.	egin	
Thank you for joining us; the webinar will b shortly.	egin	
Thank you for joining us; the webinar will b shortly.	egin	
Thank you for joining us; the webinar will b shortly.	egin	
Thank you for joining us; the webinar will b shortly.	egin	
[Enter a question for staff]	egin	
Thank you for joining us; the webinar will b shortly. [Enter a question for staff] Retooling Regulation	egin	
Thank you for joining us; the webinar will b shortly. [Enter a question for staff] Retooling Regulation Webinar ID: 294-296-827	egin	

What's "*Beneficial* Electrification"?

Isn't ALL Electrification "Beneficial"?

Beneficial Electrification (BE) - Three Conditions

Photo credit: Flickr 401(k) 2012

4985 D

Consumer Economics: Key Factors

- Efficiency of space heating options
- Building type and its thermal efficiency
- Space cooling desired?
- Incremental cost of installation
- Cost of fuel

Current Economics of Converting Existing Oil Furnaces to Air Source Heat Pumps

Source: Compiled with data from American Council for an Energy-Efficient Economy and US Energy Information Administration.

Current Economics of Space and Water Heating Electrification

Source: Billimoria, S., et al (2018). The Economics of Electrifying Buildings. Boulder, CO: Rocky Mountain Institute. Retrieved from https://www.rmi.org/insights/reports/economics-electrifying-buildings (Oakland – New Construction)

Current Economics of Space and Water Heating Electrification

Source: Billimoria, S., et al (2018). The Economics of Electrifying Buildings. Boulder, CO: Rocky Mountain Institute. Retrieved from https://www.rmi.org/insights/reports/economics-electrifying-buildings (Oakland – Retrofit)

Current Economics of Space and Water Heating Electrification

Source: Billimoria, S., et al (2018). The Economics of Electrifying Buildings. Boulder, CO: Rocky Mountain Institute. Retrieved from https://www.rmi.org/insights/reports/economics-electrifying-buildings

Future Economics of Converting Existing Gas Furnaces to Air Source Heat Pumps

Source: Jadun, P., McMillan, C., Steinberg, D., Muratori, M., Vimmerstedt, L., and Mai, T. (2017). Electrification Futures Study: End-use Electric Technology Cost and Performance Projections Through 2050

2. Reduces Environmental Impacts

Power Sector Fuel Mix Is Changing: MISO Example

MISO Generation Portfolio Evolution

What Are the Marginal Emissions?

Municipal waste, demand response, interface, and other fuels are marginal units less than 1% of the time and excluded from the chart above.

Adapted from: PJM Interconnection. (2017). 2012-2016 CO2, SO2 and NOX Emission Rates.

Oil Furnace

Heat Pump (ENERGY STAR®)

513 gallons oil/year

22 lb CO₂/Gallon

11,300 lb CO₂/year

7,754 kWh/year

50% Gas; 50% Coal 1,400 lb CO₂/MWh

10,855 lb CO₂/year

Emissions Efficiency Depends on Electricity System Fuel Mix

Emissions Efficiency (pounds/MMBTU of useful space heating) for various electric technologies, located on different power grids

			Elect	ric Power Sy	/stem Mix	
	Energy Factor (Coefficient of Performance)	100% Coal	50% Gas, 50% Coal	100% Gas	50% Gas, 50% Non- Carbon	100% Non- Carbon
Air-Source Heat Pump	, , , , , , , , , , , , , , , , , , ,					
Standard HP	3.0	226	157	87	43	00
Cold Climate HP	2.5	272	188	104	52	00
With Propane Backup 10% of Heating	3.0	218	156	93	54	15
Ground-Source Heat Pump	4.0	170	117	65	33	00
Electric Resistance Storage	1.0	679	470	260	130	00

Residential Energy Investments Are Long-Lived

3. Enables Better Grid Management

Avoid High-Cost Hours

 Top 1% of hours = 9% of total spending

Top 10%

 of hours =
 26% of
 total
 spending

Source: Rhode Island Power Sector Transformation, Phase One Report to Governor Gina M. Raimondo (November 2017)

Reducing Renewables Curtailment

Note: All curtailment percentages shown represent both forced and economic curtailment.

PJM's 2012 curtailment estimate is for June through December only.

Source: Wiser, R., & Bolinger, M. (2017). 2016 Wind Technologies Market Report.

Controllability is Key

Billimoria, S., et al (2018). *The Economics of Electrifying Buildings*. Boulder, CO: Rocky Mountain Institute. Retrieved from <u>https://www.rmi.org/insights/reports/economics-electrifying-buildings</u>. Thermostat image: Nest.com.

Questions?

Please send questions through the Questions pane

File View Help ⊕ □ □ ×	-
▼ Audio 1	
Sound Check	
 Computer audio 	2
Phone call	
🖉 MUTED	
Headset Microphone (Logitech \lor	•
Headset Earphone (Logitech Ste $$	
▼ Questions 1	
▼ Questions 1 Thank you for joining us; the webinar will begin shortly.	
✓ Questions Thank you for joining us; the webinar will begin shortly.	
▼ Questions Thank you for joining us; the webinar will begin shortly.	
Questions Thank you for joining us; the webinar will begin shortly. [Enter a question for staff]	
Questions Thank you for joining us; the webinar will begin shortly. [Enter a question for staff] Send	
Questions Thank you for joining us; the webinar will begin shortly. [Enter a question for staff] Send Retooling Regulation	
Questions Thank you for joining us; the webinar will begin shortly. [Enter a question for staff] Send Retooling Regulation Webinar ID: 294-296-827	

4

Strategies for BE Space Heating

- 1. Building Codes
- 2. State Energy Policies
- 3. Rate Design
- 4. Incentive Programs

Building Codes

- Importance of thermal efficiency
- Move toward requiring high-efficiency electric space heating and cooling
- New residential structures "all electric ready"?

Energy Efficiency Resource Standards

- Adopt a carve-out for electrification
- Adapt metrics to reflect reductions in primary energy use or GHG emissions

Rate Design

Make the choices the customer makes to minimize their own bill consistent with the choices they would make to minimize system costs.

Shift usage to lower-cost and lower-emission hours.

Key Elements of TOU Rates: Fort Collins, Colorado

	Summer	Winter
Customer Charge	\$6.16	\$6.16
Off-Peak	\$.066	\$.065
On-Peak	\$.235	\$.211
Tier Charge All Usage Over 700 kWh	+\$.017	+\$.017

A TOU Rate Does Not Mean A Higher Bill For Typical Residential Consumers

A TOU Rate Does Not Mean A Higher Bill For Typical Residential Consumers

Flat Rate

1,000 kWh @ \$0.10 = \$100

TOU Rate

800 kWh @ \$.05 off-peak + 200 kWh @ \$.30 on-peak = \$100

Two-Peak Rate Design

Advanced Pricing Helps Grid Flexibility

Incentive Programs

- Run by utilities, states, and third parties
- May enable or obstruct beneficial electrification

Multi-zone ductless heat pump

- Tend to reward switching to a more efficient appliance that uses the same fuel
- Many explicitly disallow
 fuel switching
- Programs may be working at crosspurposes to BE

Sources for images: www.mitsubishicomfort.com and www.americanstandardair.com

Final Thoughts

- Beneficial Electrification is a framework to help decisionmakers
 - Opportunities will vary
 - Analyze for local circumstances
 - ID and remove barriers
 - Revisit electricity rates and program incentives.
 - Is there value in
 - Developing infrastructure and a market,
 - Educating consumers, and
 - Contractors?

Our BE Series

- Beneficial Electrification of Space Heating is the second of four papers.
- Beneficial Electrification: Ensuring Electrification in the Public Interest was published in June 2018.
- Papers on BE considerations for water heating and electric transportation will follow in the next few months.

Questions?

Please send questions through the Questions pane

File View Help ⊕+		
▼ Audio	បា	(-)
Sound Check	?	
 Computer audio 		2
Phone call		
🖉 MUTED		
Headset Microphone (Logitech	\sim	•
↓))		
Headset Earphone (Logitech Ste	\sim	
▼ Questions	5	
 Questions Thank you for joining us; the webinar will be shortly. 	한 gin	
Questions Thank you for joining us; the webinar will be shortly.	gin	
Questions Thank you for joining us; the webinar will be shortly.	gin	
Questions Thank you for joining us; the webinar will be shortly. [Enter a question for staff]	5] gin	
Questions Thank you for joining us; the webinar will be shortly. [Enter a question for staff]	Send	
Questions Thank you for joining us; the webinar will be shortly. [Enter a question for staff] Retooling Regulation	Send	
Questions Thank you for joining us; the webinar will be shortly. [Enter a question for staff] Retooling Regulation Webinar ID: 294-296-827	51 gin Send	

Final Thoughts

- Beneficial Electrification is a framework to help decisionmakers
 - Opportunities will vary
 - Analyze for local circumstances
 - ID and remove barriers
 - Revisit electricity rates and program incentives.
 - Is there value in
 - Developing infrastructure and a market,
 - Educating consumers, and
 - Contractors?

Beneficial Electrification Resources from RAP

Beneficial Electrification: Ensuring Electrification in the Public Interest

↗<u>Utilities Can Get a "LEG" Up with Beneficial Electrification—But</u> <u>Regulators Also Have to be Ready</u>

Beneficial Electrification: A Growth Opportunity

Beneficial Electrification: A Key to Better Grid Management

Environmentally Beneficial Electrification: The Dawn of Emissions Efficiency (Electricity Journal)

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, nonpartisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Grid Management

A TOU Rate Does Not Mean A Higher Bill For Typical Residential Consumers

Flat Rate

1,000 kWh @ \$0.10 = \$100

TOU Rate

800 kWh @ \$.05 off-peak + 200 kWh @ \$.30 on-peak = \$100

	+	
	On-	
	Peak	
1 2 3 4 5 5 7 8 5 10 11 12 13 14 15 16 17 10 19 20 21 22 23	ΤΟυ	
	Rate	
	\$.30	Flat Rate \$.10
Off-Peak TOU Rate \$.05		