

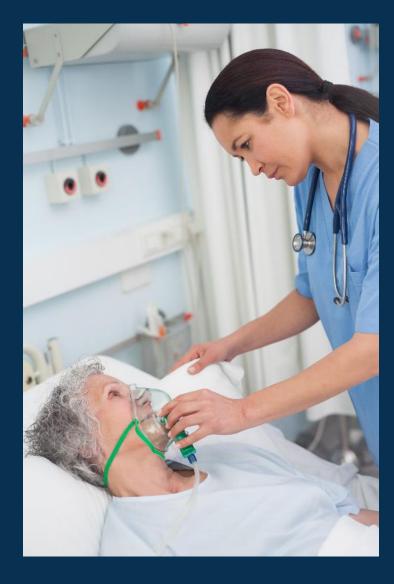
December 5, 2019

Value Added: Measuring the Health Benefits of Energy Efficiency and Renewables

RAP Webinar

Emma Zinsmeister Senior Community Programs Specialist U.S. Environmental Protection Agency Nancy Seidman Senior Advisor Regulatory Assistance Project Jim Lazar Senior Advisor Regulatory Assistance Project

Questions?


Please send questions through the Questions pane

File View Help ⊕ □ □ ×	-
▼ Audio 5	(
Sound Check	
 Computer audio 	2
Phone call	
🖉 MUTED	
Headset Microphone (Logitech 🗸	Y
(b))	
Headset Earphone (Logitech Ste \checkmark	
▼ Questions 🗳	
Thank you for joining us; the webinar will begin shortly.	
[Enter a question for staff]	
Send	
Retooling Regulation	
Webinar ID: 294-296-827	
🛞 GoToWebinar	

EPA Report: Benefits per Kilowatt Hour

Our Experts

Emma Zinsmeister

Nancy Seidman

Jim Lazar

Estimating the Monetary Value of Outdoor Air Quality Health Benefits from Energy Efficiency and Renewable Energy

Energy and Environment Program

Emma Zinsmeister, MPH CPH RAP Webinar December 5, 2019

EPA's State and Local Energy and Environment Program

United States

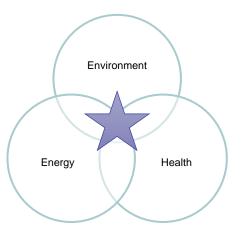
ental Protection

EPA's new health benefits per kilowatthour (BPK) values

Use to quickly estimate the monetary value of health benefits from reductions in fine particulate matter ($PM_{2.5}$) due to energy efficiency (EE) and renewable energy (RE)

- ✓ Free
- ✓ Easy to use
- ✓ Peer-reviewed

BPK values (¢/kWh) are available for:


- ✓ 10 regions of the United States
- ✓ Solar, wind, uniform and peak EE

Technical report provides details on methodology and appropriate uses

Efficiency and renewables provide air quality and health benefits

- EE and RE deliver health and environmental benefits by avoiding fossil-fired power plant emissions, which improves air quality and enhances public health
- State and local governments, and others are increasingly looking to quantify and document the **air quality and health benefits** of EE and RE, driven by:
 - Policymaker and planner interests in addressing local air quality and health concerns
 - Energy regulators seeking comprehensive assessments of costs and benefits of energy choices
 - Green banking and EE/RE industries looking to demonstrate public health benefits of investments

Air pollution is the 8th leading risk factor for mortality, accounting for almost 4% of deaths (107,500) in the United States in 2017 alone*

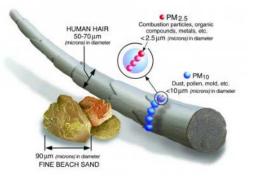
Health outcomes associated with PM_{2.5} assessed and monetized in BPK values:

Adult Mortality

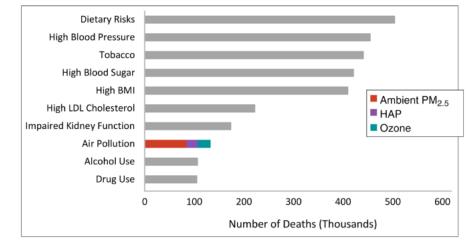
Infant Mortality

Non-fatal Heart Attacks

Respiratory & Cardiovascular Hospital Admissions


Acute Bronchitis

Upper & Lower Respiratory Symptoms


Asthma Exacerbations & Emergency Room visits

Minor Restricted Activity Days

Work Loss Days

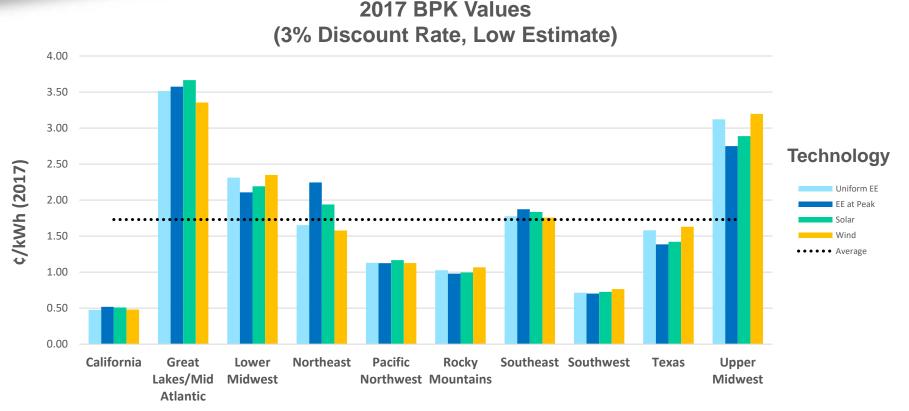
Leading risk factors for death and disability in the United States in 2017.

*State of Global Air 2019, USA Country Profile

EPA used existing tools and expert input to develop the BPK values

- Wind 100 MW
- Solar 100 MW
- Uniform EE 500 GWh
- Peak EE
 200 GWh
 (12-6 pm weekdays)

Scenarios


- Estimate changes in electricity generation
- Estimate changes in emissions of NO_X, SO₂, and primary PM_{2.5}

- Estimate air quality changes (primary and secondary PM_{2.5})
- Estimate dollar value of public health benefits

 Regional factors (¢/kWh) for estimating the monetized health benefits of kWh saved through EE or generated through RE BPK values show greater variation by region than technology, based on existing fuel mix and population density

AVERT Region

How to use the BPK Values

View the full list of BPK values at:

https://www.epa.gov/statelocalenergy/estimating-health-benefits-kilowatt-hourenergy-efficiency-and-renewable-energy

	3% Discount Rate		
Region	Project Type	2017 ¢/kWh	2017 ¢/kWh
		(low estimate)	(high estimate)
	Uniform EE	0.48	1.08
0.00	EE at Peak	0.52	1.17
California	Solar	0.51	1.15
	Wind	0.48	1.09
	Uniform EE	3.51	7.95
Great Lakes/ Mid-	EE at Peak	3.57	8.08
Atlantic	Solar	3.67	8.29
	Wind	3.35	7.59
	Uniform EE	2.31	5.23
Lower Midwest	EE at Peak	2.11	4.77
Lower Midwest	Solar	2.19	4.96
	Wind	2.35	5.32
	Uniform EE	1.65	3.73
27 4 4	EE at Peak	2.24	5.07
Northeast	Solar	1.94	4.38
	Wind	1.58	3.56
	Uniform EE	1.13	2.55
Decific Mandata	EE at Peak	1.12	2.54
Pacific Northwest	Solar	1.17	2.64
	Wind	1.13	2.55
	Uniform EE	1.03	2.32
D 1 14 1	EE at Peak	0.98	2.21
Rocky Mountains	Solar	0.99	2.25
	Wind	1.07	2.41
	Uniform EE	1.78	4.02
Contract	EE at Peak	1.87	4.24
Southeast	Solar	1.83	4.15
	Wind	1.76	3.98
	Uniform EE	0.71	1.62
a a b	EE at Peak	0.70	1.59
Southwest	Solar	0.73	1.64
	Wind	0.77	1.73
	Uniform EE	1.58	3.58
T	EE at Peak	1.39	3.13
Texas	Solar	1.42	3.22
	Wind	1.63	3.69
	Uniform EE	3.12	7.06
	EE at Peak	2.75	6.22
Upper Midwest	Solar	2.89	6.53
	Wind	3.20	7.23

BPK x \triangle **kWh = Estimated Health Benefits (\$)**

To use:

- Select appropriate BPK value
 - Region, technology, sensitivity, discount rate (3% or 7%)
- Multiply BPK value by
 - kWh saved from EE
 - kWh generated by RE

Example analyses:

- Estimating the public health benefits of regional, state, or local-level investments in EE/RE
- Understanding the cost-effectiveness of regional, state, or local-level EE/RE projects, programs, and measures
- Incorporating health benefits in short-term regional, state, or local policy analyses and decision-making

BPK values demonstrate that the health benefits of EE/RE are substantial and quantifiable

- Air pollution remains an important health challenge in the United States
- EE and RE are critical strategies for improving air quality and public health
- EPA's new **BPK values are a free**, **credible**, **and easy-to-use resource** for incorporating the health benefits of EE and RE into decision making

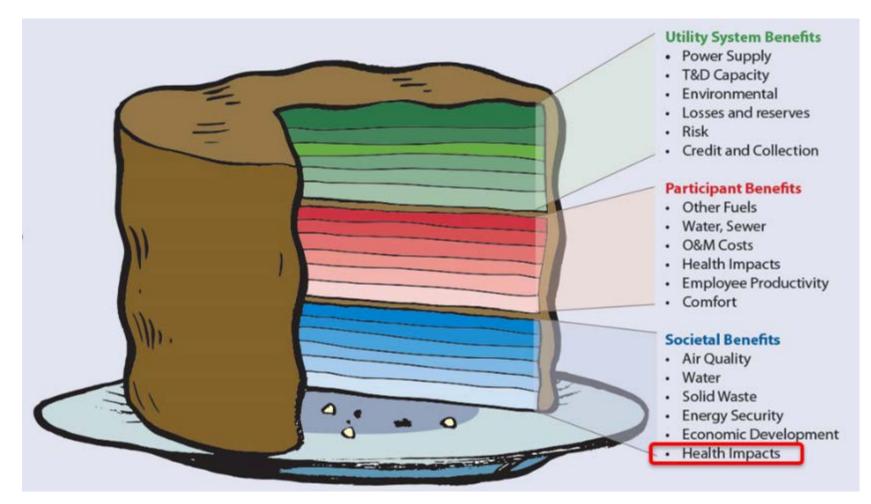
For more information

- Access the BPK values and technical report at: <u>https://www.epa.gov/statelocalenergy/estimating-health-benefits-kilowatt-hour-energy-efficiency-and-renewable-energy</u>
- More tools and resources are available on EPA's website: <u>www.epa.gov/statelocalenergy</u>
- Sign up for our Newsletters: www.epa.gov/statelocalenergy/state-local-tribal-energy-newsletters

Thank you!

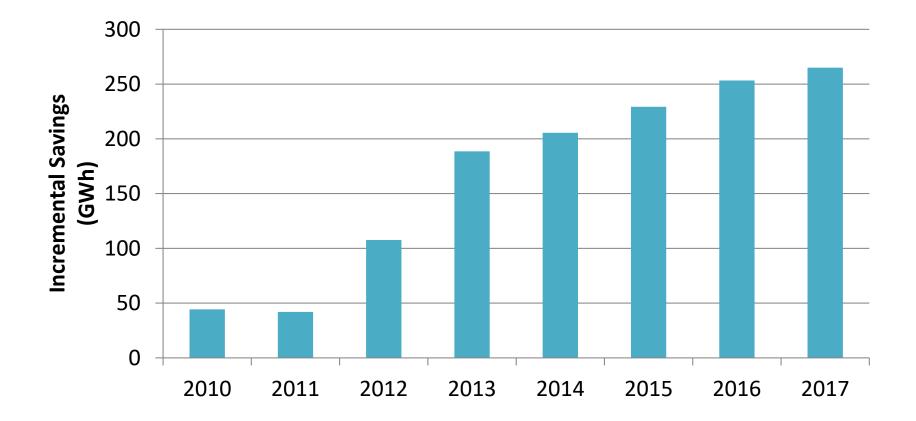
Emma Zinsmeister, MPH CPH

Senior Community Programs Specialist U.S. EPA State and Local Energy and Environment Program


zinsmeister.emma@epa.gov

State and Local Energy and Environment Program

RAP's "Layer Cake" Approach



Source: https://www.raponline.org/knowledge-center/recognizing-the-full-value-of-energy-efficiency/

Energy Efficiency Improves Air Quality

- Complying with public health standards
- Complying with visibility standards
- Developing implementation plans
- Demonstrating "permanent, quantifiable, surplus, enforceable" reductions

Example: Arkansas EE Programs

19

Arkansas EE and BPK Benefits

- EE program cost: \$73.5 million in 2017
- BPK health benefits in 2017: \$5.6 to \$12.7 million
- With 10-year measure life, the benefits likely exceed the costs!

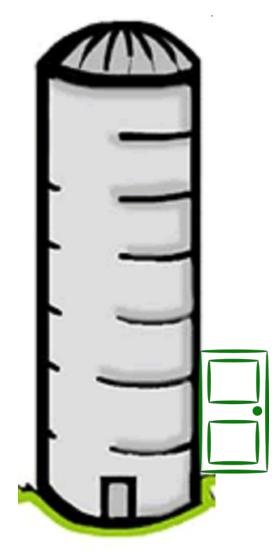
Source for program costs: Arkansas PSC, Docket No. 07-077-TF

Air Quality Ideas for BPK

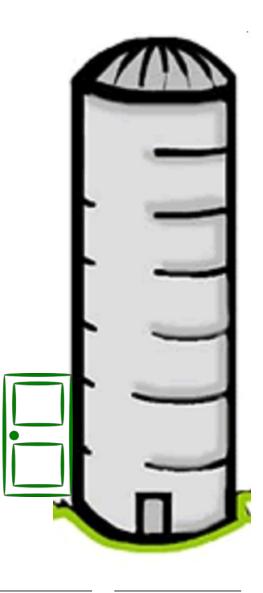
- EE is the first fuel!
 - What test does your state use for EE cost/benefit analysis?
 - Can BPK be used in that test?
- Ozone planning
- Regional haze planning

Caney Creek Wilderness AR– WinHAZE 2015 Modeled Visibility Conditions

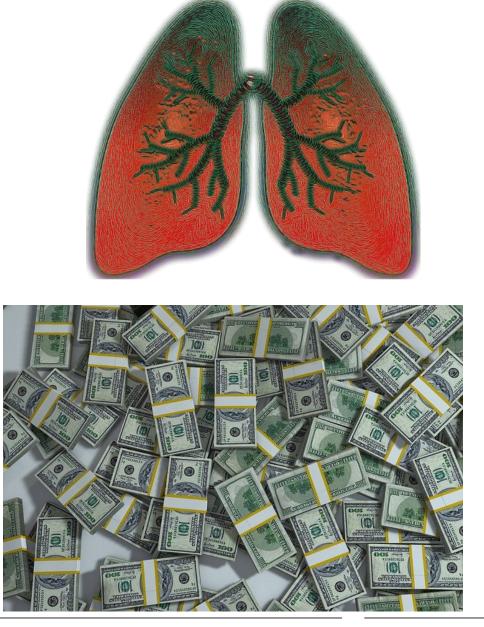
What's 100 MW Worth in Health Benefits?



Annualized Capital Cost: \$20.2 million (37% capacity factor)


Annualized Capital Cost: \$12.2 million (27% capacity factor)

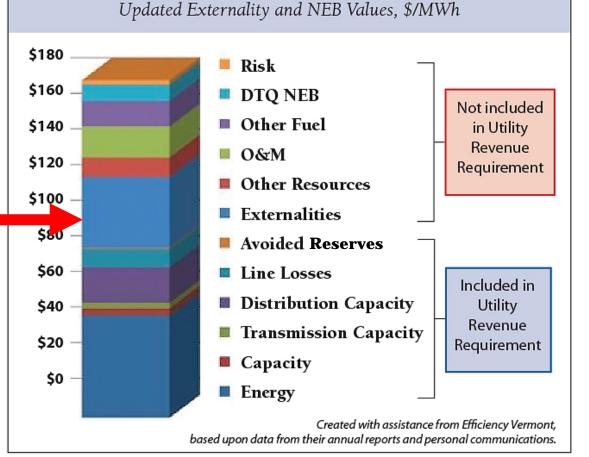
Annual Health Benefits	Low values, 3% discount (\$ millions)	High value, 3% discount (\$ millions)
Upper Midwest (Wind)	\$10.1	\$22.8
Upper Midwest (Solar)	\$6.8	\$15.4



BPK and the Power of Collaboration

EPA Provides Range Estimates

- Efficiency, solar, and wind
- Regional values
- Low to high estimates
- Different discount rates


Table ES.1. 2017 Benefits-per-kWh Values (cents per kWh, 2017 USD) ¹

		3% Discount Rate		7% Discount Rate	
Region	Project Type	2017 ¢/kWh (low estimate)	2017 ¢/kWh (high estimate)	2017 ¢/kWh (low estimate)	2017 ¢/kWh (high estimate)
	Uniform EE	0.48	1.08	0.42	0.96
California	EE at Peak	0.52	1.17	0.46	1.04
Camonia	Solar	0.51	1.15	0.45	1.03
	Wind	0.48	1.09	0.43	0.97
	Uniform EE	3.51	7.95	3.14	7.09
Great Lakes/ Mid-	EE at Peak	3.57	8.08	3.19	7.21
Atlantic	Solar	3.67	8.29	3.27	7.39
	Wind	3.35	7.59	2.99	6.77

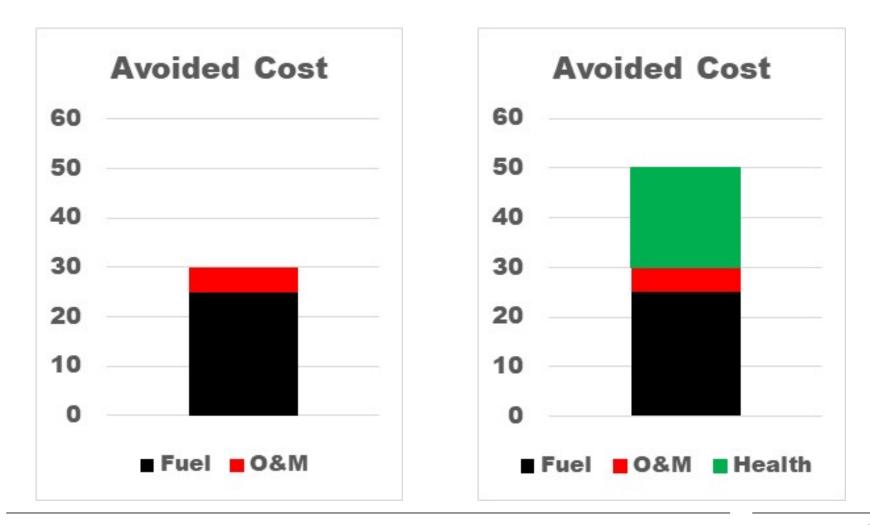
Utility Procurement – Efficiency

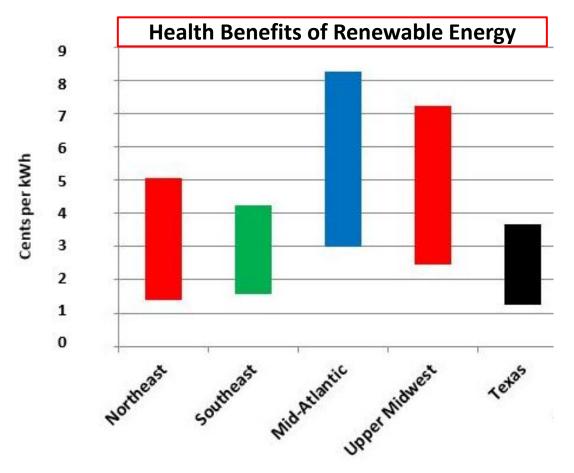
Quantification of externality costs

Vermont Energy Efficiency Savings Value

Add the Health Benefit of Efficiency to the Cost-Effectiveness Threshold

- Should change what measures are eligible under TRC and Societal Cost Test.
- May not change the amount the utility will pay.


Peak-Oriented Efficiency


Utility Procurement: Consider Health Impacts in Avoided Cost

Utility Dispatch

New Wind and Solar Are More Than Cost-Effective

Rate Design: Residential

Rate Element	Typical Rate
Customer Charge	\$10.00
Energy Charge	\$0.12/kWh

Option 1: Higher Energy Charge

Rate Element	Typical Rate	Alternative Rate
Customer Charge	\$10.00	\$3.00
Energy Charge	\$0.12/kWh	\$0.13/kWh

Option 2: Resource-Based Rates Example: Puget Sound Energy

Rate Element	Amount
Customer Charge	\$7.49
First 600 kWh	\$0.09/kwh
(Hydro, Wind)	
Energy Charge	\$0.11/kWh

Typical Large Commercial Rate

Rate Element	Amount
Demand Charge	\$10.00/kW
Energy Charge	\$0.10/kWh

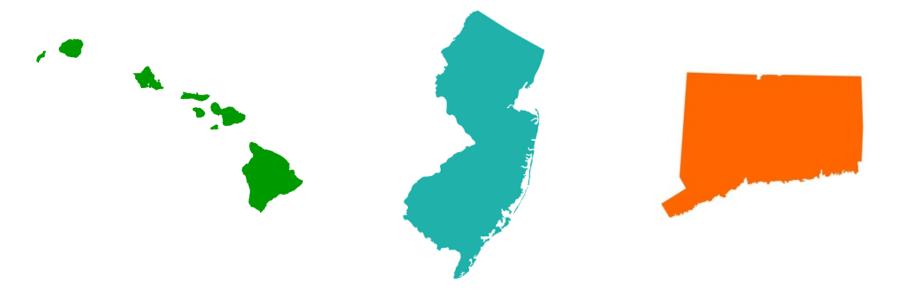
Rate Reflecting Health Costs: Limit Demand Charges to Key Hours

Rate Element	Application	Amount
Demand Charge	5 – 8 PM ONLY	\$10.00/kW
Energy Charge	Off-Peak On-Peak	\$0.10/kWh \$0.13/kWh

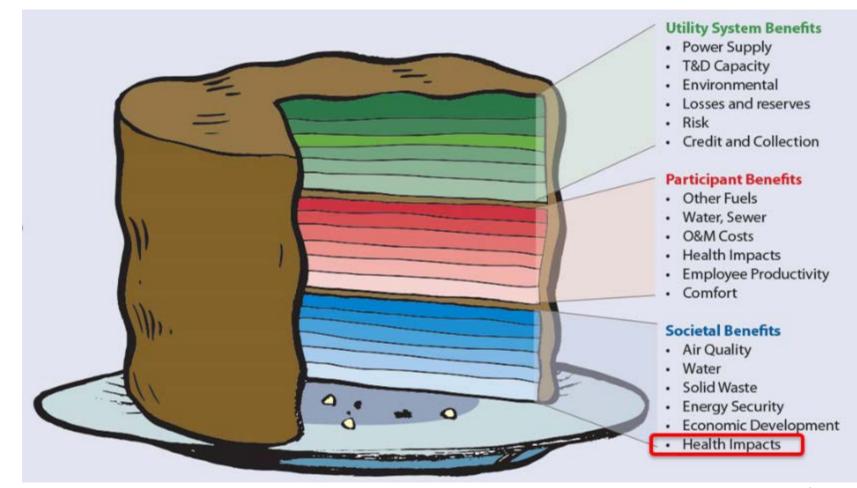
State Tax Incentives: Efficiency

Sales tax exemption

• Direct purchase incentive grants from state funds



Investment tax credit


 Direct install program for low-income consumers

State Tax Incentives: Renewables

- Tax credit
 Property tax
 exemption
 - Sales tax exemption

Bottom Line: More Frosting!

Source: https://www.raponline.org/knowledge-center/recognizing-the-full-value-of-energy-efficiency/

Questions?

Please send questions through the Questions pane

File View Help ⊕ - □ □ ×	-
▼ Audio 🖸	(
Sound Check	
 Computer audio 	1
Phone call	
, č	
NUTED	
Headset Microphone (Logitech \lor	•
(1)	
Headset Earphone (Logitech Ste $$	
▼ Ouestions 5	
▼ Questions 1	
Thank you for joining us; the webinar will begin shortly.	
[Enter a guestion for staff]	
[enter a question for stan]	
Send	
Send	
Send Retooling Regulation	
Send	

BPK: A Very Useful Tool

- This report reveals the sizable health benefits of efficiency and renewables.
- Regulators and policymakers can incorporate this data into planning, rate design, and more.
- EPA is interested in information about how these values are being used and welcomes questions.

Resources

- Estimating the Health Benefits per Kilowatt-hour of Energy Efficiency and-Renewable-Energy
- Recognizing the Full Value of Energy-Efficiency
- Value Added: Measuring the Health Benefits of the Layer Cake
- Smart Rate Design for a Smart Future
- Smart Non-Residential Rate Design
- Avoided Emissions and Generation Tool (AVERT):
 - Home page | User manual
- Co-Benefits Risk Assessment (COBRA) Health Impacts Tool:
 - Home page | User manual

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Contact us at: jlazar@raponline.org nseidman@raponline.org

What's 100 MW Worth in Health Benefits?

Three AVERT Regions

	Low values, 3% discount (\$ millions)	High value, 3% discount (\$ millions)
Upper Midwest (Wind)	10.1	22.8
Upper Midwest (Solar)	6.8	15.4
Southeast (Wind)	5.5	12.5
Southeast (Solar)	4.3	9.8
Northeast (Wind)	5.0	11.2
Northeast (Solar)	4.6	10.4

Assume 315,360,000 kWh/year for wind and 236,520,000 kwh/hear for solar